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Stability of one-dimensional array solitons
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The array soliton stability in the discrete nonlinear Sdimger equation with dispersion for periodic bound-
ary conditions is studied. The linear growth rate dependence on the discrete wave number and soliton ampli-
tude is calculated from the linearized eigenvalue problem using the variational method. In addition, the
eigenvalue problem is solved numerically by shooting method and a good agreement with the analytical results
is found. It is proved numerically that the results for the instability threshold for the circular array coincides
with the quasicollapse threshold for the case of open arrays with initial pulses in a form of array solitons.
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I. INTRODUCTION NLS equation, the CDNLS equation exhibits features allow-
ing an introduction of concepts in designing all-optical de-
Wave instabilities are important physical phenomena typivices based on optical pulse propagation in NFA. One is the
cally arising in nonlinear physical systems. Mathematicalexistence of multidimensional solitary wave solutions local-
modeling of these nonlinear systems with a different originized in both dimensions, discrete and continu¢@k An-
often leads to one of the universal nonlinear evolution equaother difference is the quasicollapse behavior of the CDNLS
tions, such as the nonlinear Sctinger equation(NLS), equation[7], closely related to the collapse phenomenon in
Korteweg—de Vries equation, Sine Gordon equation2D NLS equation. However, for CDNLS equation the col-
Kadomtsev-Petviashvili equation, etc. These nonlinear pafapse process, instead toward singularity, evolves to stable
tial differential equations represent continuum models formultidimensional solitary wave solution.
different nonlinear systems exhibiting diverse and fascinat- The problems of existence and stability of the solitary
ing phenomena inc|uding solitons, pattern formation, col-wave solutions in NFA localized in both continuous and dis-
lapse(blow-up) solutions, and spatiotemporal chaos, closelycrete dimensions were considered[ifi-12. In particular,
related with the wave instability phenomena. The problemstability of continuous wavegCW) as well as 1D temporal
of the soliton stability were extensively studied during thesoliton solutions under the restriction for the case where so-
last forty years and still attract a large scientific intefsse  lutions have the same shape and phase in all waveguides was
review paper from Kivshar and Pelinovskg] and refer- studied in[6,11,13. The same stability problem but in a
ences therein more general case for the moving CW and rotating solitons
On the other hand, the matter itself is discrete, i.e., itwas studied i 14]. The authors ir{6,11,14 have reported
consists of many e|ementary entities, and in a situation Whef‘he conditions for the onset instability without details about
the spatial scale of the physical process approaches the sitfee growth rate structure in the instability region. The aim of
of the elementary entities, constituents of the physical systhis paper is to give more detailed insight of the stability
tem, a continuum approach fails and the discreteness of tHroblem of 1D array soliton solutions with a complete
system must be taken into account. In this case the mattgrowth rate dependence on the discrete wave number and
ematical modeling leads to one of the discrete versions of thgoliton amplitude.
nonlinear evolution equations. Discreteness introduces a
number of_features in thg system dynamics poncerning the II. BASIC EQUATIONS
solitons existence and their stability, suppression of the wave
collapse phenomena, etc. One of the fundamental models The CDNLS equation with one discrete and one continu-
describing dynamics of different nonlinear discrete systemous space variables reads
is discrete nonlinear Schdimger (DNLS) equation. For ex-
ample, the energy transport in molecular chains of the gy, %y, 5
a-helix structure of proteing2], the propagation of nonlinear T + 29| al “+ (Y1t -1~ 2¢9,) =0,
waves in discrete electrical lattic§3], DNA dynamics[4],
and optical pulse propagation in nonlinear fiber arr@ysA)
[5] are all described with DNLS equation. Nonlinear fiber n=23,... N-1 @
arrays attract a special attention due to their possible techno-
logical application in developing all-optical devices capable The equations for the discrete elements 1 &hdepend
to compress, amplify, and switch optical pul§és-8]. The  on the boundary conditions for the array. The cloggttu-
central role in the theoretical description of the optical pulsdarly arrangedlarray is described with the periodic boundary
propagation in NFA plays £2 DNLS equation, with one conditions ;= ¢y, 1, While for the open arraylinear ar-
discrete and two continuous variables, also known asay), when the elementg, and ¢ are coupled only with
continuum-discrete nonlinear Schlinger (CDNLS) equa-  one neighbor element, boundary conditions are giverm:py
tion. Compared with the continuum two-dimensioidD) = . 1=0.
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The CDNLS equatioril) is in a close connection with the the instability develops to its final state in a form of multi-

two-dimensional continuum NLS equation dimensional soliton$9] localized in both dimensions, con-
y 5 ) tinuous and discrete. In the following section we will focus
d J J our study on the transversal instability of the soliton array
— + A+ 2|YPy= =—+— ;
't Ay+2[y*y=0, A x> gy?’ @ solution (6).

and can be derived from it with the discretization of one of
the variables in the 2D differential operatér e.g., variable

y. On the basis of this connection many analytical techniques In order to study the stability problem of the soliton array
originally developed for the continuous modg)) can be solution(6) we introduce small perturbations in the system
adopted for application on the discrete mo@gl Moreover,

comparison between discrete and corresponding continuousy,(x,t) =[g(x) + d¢n(X,t)JexpiNt, |syn(x,t)]<g(x),
models allows extraction of useful information about the 7
properties of the discrete model.

The variables in the CDNLS equatidft) have different in a form i, (x,t) = 6¢(x,t)cos6n), where withs=27/N
meaning depending on the nature of the nonlineafs introduced the discrete wave number.
continuous-discrete systems they describe. In particular, for After the substitution of Eq(7) into Eq. (1), keeping only
the case of optical pulses propagation in NFA the CDNLSlinear terms inéyr, and splitting the perturbations into real
equation takes a form and imaginary part®,,=a+ib, the following set of two

ordinary differential equations is obtained

Ill. STABILITY ANALYSIS

I Yy 2
ITWLBWJFZWMIM T 0(¢ns1t a1 2¢,)=0, ab(x,t) .
(3) ot —_L+a(X,t),
wherey, is the electric field envelope into teh fiber, z is ga(x,t)
the distance along the fibers in the frame of reference moving L= IA_,b(x,t), (8)

with a group velocityv 4, t=T—2/v, is the retarded timej at

is the coupling coefficient between neighboring fibesss N

the group velocity dispersion parameter, ani$ the nonlin- wherelL .. are linear second order differential operators de-
ear coefficient. Taking into account that variableendx in ~ fined with

Eqg. (1) have a reverse meaning in the fiber optitgorre- 5

sponds toz and x to t) and introducing dimensionless vari- ~ Jd 2 2 .
ablesy,— v/ 5, t—t/8l B, andz— 6z, Eq.(3) becomes L=t -6g7 00 +4 sir?(s/2), ©)
equivalent with the Eq(l).
The CDNLS equation(1) is not integrable but possess . 92 _
conserved quantities such as the number of quéPitand L=- 0.,7+)\2—292(X)+4 Sir(s/2). (10

Hamiltonian(H)

- The stability analysis for the case of the uniform continu-
pzz f || 2dX, (4) ous wave solution is simple but for the case of the array
n o J-e soliton solution(6) is complicated due to the dependence

" of the operators . . For the further analysis it is convenient
H:E J (|’pn_¢n71|2+|‘/’n,x|2_|¢n|4)dxa (5) to express these operators in terms of the following Sturm-
n J-o Liouville-type operators

which plays an important role in studying dynamics of the A 52
CDNLS equation. Si=--2+6 tantt(y),

For the system with periodic boundary conditions the set y
of stationary one-dimensionaihdegendent on inder) so- 2
lutions has a formy,,o=g(x)expirt. The first one is the & __ %
uniform continuous wave solution wittp(x) =\/v2 and the S 2 +2tanki(y). @y
second one is the soliton array solution

Defining a new independent varialjle- X\, the operators

9(x)=M/costrx), ® [, take aform
uniform along the discrete dimension and localized in the - .
continuous dimension. The real parametan both cases is Ly =N(S:+p—5),
related to the solution amplitude. A A
It was shown analytically and numerically that both solu- Lo=A%(S_+u—1), (12

tions are unstable under the small perturbations along the
discrete dimensiorftransverse perturbation$l1] and that whereu is defined with
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4 whereu>0 implying s# ms, wherem=0,1,.... Finally, re-
M=Fsm2(s/2). (13 placing the smallest eigenvalues and corresponding eigen-
functions from Eq(14) for the lower bounds of the function-

. als (17) and(18) we have
The Sturm-Liouville operatorsS. are known as one-

particle operators in quantum mechanics and their spectra are inf F{ =pn—3, (19
well known[15]. They are positive definite and possess only
positive eigenvalues. The smallest eigenvalu(é’é and cor- inf F{ =p. (20)
responding eigenfunctiong’®) in the discrete spectra of the )
operatorsS. are According to the procedure for the corresponding con-
tinuous model described in detail 28] the energy principle
o 9=1; ¢ 9=1/coshy), is applicable foru>0 and the system is unstable for<Qe

<3 whereL , is indefinite, and stable fqu>3 whereL , is
©) . (0)_ positive definite. For the soliton array solution these results
ol'=2; ¢ V'=1lcosR(y). (14 lead to the following instability condition
It is important to point out that the discreteness of the b o 4 sirf(s/2)
system is incorporated into the structure of the operdtiZs N> - (21)
only through the defined parametgr (13), which allows

straightforward application of the stability analysis originally ~ The result(21) coincides with the result obtained fi1]

used for the corresponding continuous model. and forN— o leads to\ .~ 7.255. This value corresponds to
the threshold power=P(\.)~2.69 that lies between
A. Energy principle lower (v,~2.34) and upper #,~4.89) bounds obtained

i . . . . with a rigorous mathematical treatment[it3].
As a first step in the stability analysis we will try to use an

energy principle that was applied to the soliton stability
problems in continuous mode[46-18. If we consider a
square integrable functiog(y) (scalar product exists and is In order to find out more details about the instability
finite), then eigenfunctiong("(y) corresponding to discrete modes satisfying the instability conditi¢@1) we can use the
eigenvaluess™ of a self-adjoint operatof. represent sta- Variational approactp18,19. For the normal exponentially

B. Variational principle

tionary values of the functional growing modesa(t,y)=a(y)expyt; b(t,y)=b(y)expyt
with the growth ratey, the Egs.(8) are transformed to the
(YILy) following eigenvalue equations:
FL(p)= s (15 A
Lia(y)=—Tb(y),

It means that the functiondll5) has a vanishing first varia-

tion for the eigenfunctions/(™(y) and if it has a lower L_b(y)=Ta(y), (22
bound than it corresponds to the smallest eigenvafie of wherel' = y/\2 is the normalized growth rate. The E@2)
the operatoiL can be derived from the variation of the action
O] 4O ”
O S Ll L 16 5S= 5fiw£(a,ay,b,by,y>dy, (23

- i ) where the Lagrangian is given by
For the operator& .. defined with Eq.(12) follows that the

corresponding functionals in a for are bounded from 1 +1 3
ding functionals in a forfl5) are bounded f 2 20 | M 2
below, L=5(ay+by)+ 2 cosRy) |2
e WO @S S e e
L= =gy T ooy AT 2 cosH(y)
= O-<+0)+ w—5, (17) It is well known that the variational principle results criti-
cally depend on the choice of the test functions. A choice of
O 10 O1& 1(0) good test functions is an essential step in the application of
inf Er = (P Ly ) _ (¥ S_ >+ _1 the variational principle and to undertake it successfully is
L (OO YOOy T H necessary to obtain some qualitative information about the
©) solution of the eigenvalue proble(82). Combining Eq(22)
=0 +u—1, (18 we obtain the equation.
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L.L_b(y)+I?b(y)=0, (25)

a) N=3

analytical
© numerical

where a solution is an eigenfunctid®)(x,t) corresponding
to the least eigenvalue of the operator [ [ _ where the

role of the eigenvalue plays the growth raté. Operatorl 10
is a product of two second order differential operators that

are invariant with respect to space reversal and consequently

the eigenfunctions must have even or odd parity. Another
useful information for finding a good test function is knowl- 05
edge of the marginally stable solutions representing the in-
tersection points of the dispersion cuni&¥ ) with u axis.
These solutions can be found from the E2R) for I'=0

0.0

L a(y)=L_b(y)=0. (26) A

For the local marginally states with the discrete eigenvalues 5|
two even solutions can be found for the cutoff values of the
parametenu -

b) N=15

analytical
numerical

a(y)=0, b(y)=1/coshy) for u=0, (27) 10

a(y)=1/cosk(y), b(y)=0 for u=3. (29

~ ~ 05
The simplest choice of the test functioagy) and b(y)
based on the previous consideration with two variational pa-
rametersae and g is
- ~ 00 O.I2 ‘ 0.4 I 0.6 I 0.8 . 1.0 ‘ 1.2 I 1.4 I 1T6
a(y)=alcostf(y), b(y)=plcoshy). (29 A
Introduction of the test functiona(y) and b(y) into the sl 9 =41 o momorica
Lagrangian(24) leads to the following equation for the ac- '
tion integral -
a O
S=2a2(%—1) ~up+Tap, (30) "
and the dispersion relatioh?(u) is obtained from the con- 05 L
ditions 9S/da=9S/9B=0. '
32 n
2 = — —_——
F (,LL) 71_2 Iu‘( 1 3) . (31) 0.00.0

Finally, replacing the parameter defined with Eq.(13) . . .
we have a detailed structure of the instability growth rate for FIG. 1. Comparison of analytically and numerically calculated

array soliton solution of the CDNLS equation normalized growth rateE as a function of the soliton amplitude
for different number of array elements.

. 8v2 sin(s/2) y2\?— 4 sirf(s/2)

32 dal db
o (32) OI(y) _ OI(y) o
Y ly-o Y ly-o
C. Numerical solution a()=b(x)=0. (33

The eigenvalue Eq22) are solved numerically. The par-
ity of the solution(evern and the restriction on the square  The set of eigenvalues and corresponding eigenfunctions
integrable perturbations enable us to look for the solution okatisfying the above boundary conditions are calculated with
the system(22) in the interval[0, ©) with the boundary con- the “shooting method[20] adapted here for our problem.
ditions Numerically calculated growth ratdi\) together with the
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10l o-o. a) N=15
_ e, A=0.24, T=0
& s} X =1, B=0 06 ° zﬁgyet?cc;'
= N o a(x)
T | o o bx) -
08I o, B sech(x) 0l
\\a\ ----- o sech?(x)
04| S
ss
N 0.2 |
02} ‘u\&
ooy
0.0 | T 8—8 zl 8—a zl 5—8 zl 558 :? 0.0 1'0 . 2'0 . 3'0 + 4'0
00 05 1.0 15 2.0 N
X FIG. 3. Analytically and numerically calculated instability
ol threshold values.
z b) N=15 _ o
o A=100, T=0 The whole previous analysis is devoted to the case of
% 08 =0, B=1 circularly arranged array using periodic boundary conditions.
o a(x) However, a question of possibilities to apply some of these
06| o bx) results to the case of opéimearly arrangefarrays naturally
B sech(x) arises. Analytical estimates based on the continuum approxi-
. N a sech?(x) mation for the threshold of initiation the quasicollapse pro-
cess in linearly arranged NFA with a Gaussian initial pulse in
oz b both dimensions, continuous and discrete, is given in Ref.
[7]. Here, we will try to find a threshold for the initial pulse
b 0000060600000600.6.0-0.-0.0 2 29 in a form of uniformly distributed solitoné5) along the array
, . L , . elements. It corresponds to the situation where an circular
0 1 2 3 4 array with a stationary pulse in a form of array solitons is
X opened between two arbitrary array elements. In this situa-
tion the array soliton solution of the circular array configu-
<7 ®w ° '\;:1)535 o154 ration no longer satisfy CDNLS equation with a new bound-
- . RN ary configurationlopen array. To check the pulse dynamics
X 081 o=t, p=0.897 o a) in this configuration we have performed numerical simula-
© o b(x) tions of CDNLS equation based on the split-step Fourier
0.6 B sech(x) method. Numerical results show existence of the threshold of
————— o sech?(x) initiation quasicollapse process that coincides with the insta-
0.4 o\, bility condition (21) for the case of circular array. The
matching of the thresholds is practically exact when the
0.2 ) number of array elements exceeds 15, as shown in Fig. 3.
o\ \\D Op
0.0 °o aab‘?‘% >
T T T T T T T T T T T T 1 )\«=0.4
0.0 05 1.0 15 2.0 25 3.0

FIG. 2. Eigenfunctions for the array with 15 elements for dif-
ferent values of\: (8 A=0.24 ("'~0), near the first marginally g
stable stateb) A=100 (I"'~0), near the second marginally stable —
state;(c) A=0.35 ([~1.54), between two marginally stable states.

results from the analytical solutiai32) for arrays with three
different number of elementaNE= 3;15;41), are ploted in
Fig. 1. A good agreement between the results is obvious
indicating that our choice of the test functions for the varia-
tional approach was successful. As an illustration we plot in
Fig. 2, the test function§29) together with the numerically
calculated eigenfunctions fa¥=15. Results show a better
agreement near the marginally stable states then inside the FIG. 4. Evolution of the maximal amplitude in the centralg]
instability region. and its neighbor ) element.

0 5 10 15 20 25
t
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The initially uniformly distributed(along the array ele- with periodic boundary conditiongircular array. By virtue
ments pulse energy during the quasicollapse process is coref the variational approach originally used for the corre-
centrating in the middle elements of the array evolving to-sponding continuous problems we have recovered the results
ward the stationary state in a form of multidimensionalfor the instability threshold 11,13 and obtained a detail

soliton[9]. An illustration of this dynamics for an open array Structure of the instability growth rate. Analytical results
with 15 elements is shown in Fig. 4. have been checked numerically and a good agreement has

been found.
In addition we have proved numerically that the results
for the instability threshold for the circular array is appli-
In this work we have studied in detail the problem of the cable to obtain a quasicollapse threshold for the case of open
stability of the soliton array solution of CDNLS equation arrays with the initial pulses in a form of array solitons.

IV. CONCLUSION
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