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Stability of one-dimensional array solitons
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The array soliton stability in the discrete nonlinear Schro¨dinger equation with dispersion for periodic bound-
ary conditions is studied. The linear growth rate dependence on the discrete wave number and soliton ampli-
tude is calculated from the linearized eigenvalue problem using the variational method. In addition, the
eigenvalue problem is solved numerically by shooting method and a good agreement with the analytical results
is found. It is proved numerically that the results for the instability threshold for the circular array coincides
with the quasicollapse threshold for the case of open arrays with initial pulses in a form of array solitons.
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I. INTRODUCTION

Wave instabilities are important physical phenomena ty
cally arising in nonlinear physical systems. Mathemati
modeling of these nonlinear systems with a different ori
often leads to one of the universal nonlinear evolution eq
tions, such as the nonlinear Schro¨dinger equation~NLS!,
Korteweg–de Vries equation, Sine Gordon equati
Kadomtsev-Petviashvili equation, etc. These nonlinear p
tial differential equations represent continuum models
different nonlinear systems exhibiting diverse and fascin
ing phenomena including solitons, pattern formation, c
lapse~blow-up! solutions, and spatiotemporal chaos, clos
related with the wave instability phenomena. The proble
of the soliton stability were extensively studied during t
last forty years and still attract a large scientific interest~see
review paper from Kivshar and Pelinovsky@1# and refer-
ences therein!.

On the other hand, the matter itself is discrete, i.e.
consists of many elementary entities, and in a situation w
the spatial scale of the physical process approaches the
of the elementary entities, constituents of the physical s
tem, a continuum approach fails and the discreteness o
system must be taken into account. In this case the m
ematical modeling leads to one of the discrete versions of
nonlinear evolution equations. Discreteness introduce
number of features in the system dynamics concerning
solitons existence and their stability, suppression of the w
collapse phenomena, etc. One of the fundamental mo
describing dynamics of different nonlinear discrete syste
is discrete nonlinear Schro¨dinger ~DNLS! equation. For ex-
ample, the energy transport in molecular chains of
a-helix structure of proteins@2#, the propagation of nonlinea
waves in discrete electrical lattices@3#, DNA dynamics@4#,
and optical pulse propagation in nonlinear fiber arrays~NFA!
@5# are all described with DNLS equation. Nonlinear fib
arrays attract a special attention due to their possible tec
logical application in developing all-optical devices capa
to compress, amplify, and switch optical pulses@6–8#. The
central role in the theoretical description of the optical pu
propagation in NFA plays 112 DNLS equation, with one
discrete and two continuous variables, also known
continuum-discrete nonlinear Schro¨dinger ~CDNLS! equa-
tion. Compared with the continuum two-dimensional~2D!
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NLS equation, the CDNLS equation exhibits features allo
ing an introduction of concepts in designing all-optical d
vices based on optical pulse propagation in NFA. One is
existence of multidimensional solitary wave solutions loc
ized in both dimensions, discrete and continuous@9#. An-
other difference is the quasicollapse behavior of the CDN
equation@7#, closely related to the collapse phenomenon
2D NLS equation. However, for CDNLS equation the co
lapse process, instead toward singularity, evolves to st
multidimensional solitary wave solution.

The problems of existence and stability of the solita
wave solutions in NFA localized in both continuous and d
crete dimensions were considered in@7–12#. In particular,
stability of continuous waves~CW! as well as 1D tempora
soliton solutions under the restriction for the case where
lutions have the same shape and phase in all waveguides
studied in @6,11,13#. The same stability problem but in
more general case for the moving CW and rotating solito
was studied in@14#. The authors in@6,11,14# have reported
the conditions for the onset instability without details abo
the growth rate structure in the instability region. The aim
this paper is to give more detailed insight of the stabil
problem of 1D array soliton solutions with a comple
growth rate dependence on the discrete wave number
soliton amplitude.

II. BASIC EQUATIONS

The CDNLS equation with one discrete and one contin
ous space variables reads

i
]cn

]t
1

]2cn

]x2 12cnucnu21~cn111cn2122cn!50,

n52,3, . . . ,N21. ~1!

The equations for the discrete elements 1 andN depend
on the boundary conditions for the array. The closed~circu-
larly arranged! array is described with the periodic bounda
conditionsc15cN11 , while for the open array~linear ar-
ray!, when the elementsc1 and cN are coupled only with
one neighbor element, boundary conditions are given byc0
5cN1150.
©2002 The American Physical Society04-1
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The CDNLS equation~1! is in a close connection with th
two-dimensional continuum NLS equation

i
]c

]t
1Dc12ucu2c50, D5

]2

]x2 1
]2

]y2 , ~2!

and can be derived from it with the discretization of one
the variables in the 2D differential operatorD, e.g., variable
y. On the basis of this connection many analytical techniq
originally developed for the continuous model~2! can be
adopted for application on the discrete model~1!. Moreover,
comparison between discrete and corresponding continu
models allows extraction of useful information about t
properties of the discrete model.

The variables in the CDNLS equation~1! have different
meaning depending on the nature of the nonlin
continuous-discrete systems they describe. In particular,
the case of optical pulses propagation in NFA the CDN
equation takes a form

i
]cn

]t
1b

]2cn

]x2 12gcnucnu21d~cn111cn2122cn!50,

~3!

wherecn is the electric field envelope into thenth fiber,z is
the distance along the fibers in the frame of reference mov
with a group velocityvg , t5T2z/vg is the retarded time,d
is the coupling coefficient between neighboring fibers,b is
the group velocity dispersion parameter, andg is the nonlin-
ear coefficient. Taking into account that variablest andx in
Eq. ~1! have a reverse meaning in the fiber optics~t corre-
sponds toz and x to t! and introducing dimensionless var
ablescn→cnAg/d, t→tAd/b, andz→dz, Eq. ~3! becomes
equivalent with the Eq.~1!.

The CDNLS equation~1! is not integrable but posses
conserved quantities such as the number of quanta~P! and
Hamiltonian~H!

P5(
n
E

2`

`

ucnu2dx, ~4!

H5(
n
E

2`

`

~ ucn2cn21u21ucn,xu22ucnu4!dx, ~5!

which plays an important role in studying dynamics of t
CDNLS equation.

For the system with periodic boundary conditions the
of stationary one-dimensional~independent on indexn! so-
lutions has a formcn05g(x)expil2t. The first one is the
uniform continuous wave solution withg(x)5l/& and the
second one is the soliton array solution

g~x!5l/cosh~lx!, ~6!

uniform along the discrete dimension and localized in
continuous dimension. The real parameterl in both cases is
related to the solution amplitude.

It was shown analytically and numerically that both so
tions are unstable under the small perturbations along
discrete dimension~transverse perturbations! @11# and that
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the instability develops to its final state in a form of mul
dimensional solitons@9# localized in both dimensions, con
tinuous and discrete. In the following section we will focu
our study on the transversal instability of the soliton arr
solution ~6!.

III. STABILITY ANALYSIS

In order to study the stability problem of the soliton arr
solution ~6! we introduce small perturbations in the system

cn~x,t !5@g~x!1dcn~x,t !#expil2t, udcn~x,t !u!g~x!,
~7!

in a form dcn(x,t)5dc(x,t)cos(sn), where withs52p/N
is introduced the discrete wave number.

After the substitution of Eq.~7! into Eq.~1!, keeping only
linear terms indcn and splitting the perturbations into rea
and imaginary partsdcn5a1 ib, the following set of two
ordinary differential equations is obtained

]b~x,t !

]t
52L̂1a~x,t !,

]a~x,t !

]t
5L̂2b~x,t !, ~8!

where L̂6 are linear second order differential operators d
fined with

L̂152
]2

]x2 1l226g2~x!14 sin2~s/2!, ~9!

L̂252
]2

]x2 1l222g2~x!14 sin2~s/2!. ~10!

The stability analysis for the case of the uniform contin
ous wave solution is simple but for the case of the ar
soliton solution~6! is complicated due to thex dependence
of the operatorsL̂6 . For the further analysis it is convenien
to express these operators in terms of the following Stu
Liouville-type operators

Ŝ152
]2

]y2 16 tanh2~y!,

Ŝ252
]2

]y2 12 tanh2~y!. ~11!

Defining a new independent variabley5xl, the operators
L̂6 take a form

L̂15l2~Ŝ11m25!,

L̂25l2~Ŝ21m21!, ~12!

wherem is defined with
4-2
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m5
4

l2 sin2~s/2!. ~13!

The Sturm-Liouville operatorsŜ6 are known as one
particle operators in quantum mechanics and their spectra
well known @15#. They are positive definite and possess o
positive eigenvalues. The smallest eigenvaluess6

(0) and cor-
responding eigenfunctionsc6

(0) in the discrete spectra of th

operatorsŜ6 are

s2
~0!51; c2

~0!51/cosh~y!,

s1
~0!52; c1

~0!51/cosh2~y!. ~14!

It is important to point out that the discreteness of t
system is incorporated into the structure of the operators~12!
only through the defined parameterm ~13!, which allows
straightforward application of the stability analysis origina
used for the corresponding continuous model.

A. Energy principle

As a first step in the stability analysis we will try to use
energy principle that was applied to the soliton stabil
problems in continuous models@16–18#. If we consider a
square integrable functionc(y) ~scalar product exists and i
finite!, then eigenfunctionsc (n)(y) corresponding to discret
eigenvaluess (n) of a self-adjoint operatorL̂ represent sta-
tionary values of the functional

FL̂~c!5
^cuL̂c&

^cuc&
. ~15!

It means that the functional~15! has a vanishing first varia
tion for the eigenfunctionsc (n)(y) and if it has a lower
bound than it corresponds to the smallest eigenvalues (0) of
the operatorL̂

inf FL̂~c!5
^c~0!uL̂c~0!&

^c~0!uc~0!&
5s~0!. ~16!

For the operatorsL̂6 defined with Eq.~12! follows that the
corresponding functionals in a form~15! are bounded from
below,

inf FL̂1
5

^c~0!uL̂1c~0!&

^c~0!uc~0!&
5

^c~0!uŜ1c~0!&

^c~0!uc~0!&
1m25

5s1
~0!1m25, ~17!

inf FL̂2
5

^c~0!uL̂2c~0!&

^c~0!uc~0!&
5

^c~0!uŜ2c~0!&

^c~0!uc~0!&
1m21

5s2
~0!1m21, ~18!
02660
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wherem.0 implying sÞmp, wherem50,1,... . Finally, re-
placing the smallest eigenvalues and corresponding eig
functions from Eq.~14! for the lower bounds of the function
als ~17! and ~18! we have

inf FL̂1
5m23, ~19!

inf FL̂2
5m. ~20!

According to the procedure for the corresponding co
tinuous model described in detail in@18# the energy principle
is applicable form.0 and the system is unstable for 0,m

,3 whereL̂1 is indefinite, and stable form.3 whereL̂1 is
positive definite. For the soliton array solution these resu
lead to the following instability condition

l2.lc
25

4 sin2~s/2!

3
. ~21!

The result~21! coincides with the result obtained in@11#
and forN→` leads tolc'7.255. This value corresponds t
the threshold powern5AP(lc)'2.69 that lies between
lower (n l'2.34) and upper (nu'4.89) bounds obtained
with a rigorous mathematical treatment in@13#.

B. Variational principle

In order to find out more details about the instabili
modes satisfying the instability condition~21! we can use the
variational approach@18,19#. For the normal exponentially
growing modes a(t,y)5a(y)expg t; b(t,y)5b(y)expg t
with the growth rateg, the Eqs.~8! are transformed to the
following eigenvalue equations:

L̂1a~y!52Gb~y!,

L̂2b~y!5Ga~y!, ~22!

whereG5g/l2 is the normalized growth rate. The Eq.~22!
can be derived from the variation of the action

dS5dE
2`

`

L~a,ay ,b,by ,y!dy, ~23!

where the Lagrangian is given by

L5
1

2
~ay

21by
2!1Fm11

2
2

3

cosh2~y!Ga2

1F2
m11

2
1

G

cosh2~y!Gb21Gab. ~24!

It is well known that the variational principle results crit
cally depend on the choice of the test functions. A choice
good test functions is an essential step in the application
the variational principle and to undertake it successfully
necessary to obtain some qualitative information about
solution of the eigenvalue problem~22!. Combining Eq.~22!
we obtain the equation.
4-3
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L̂1L̂2b~y!1G2b~y!50, ~25!

where a solution is an eigenfunctionb(0)(x,t) corresponding
to the least eigenvalue of the operatorL̂5L̂1L̂2 where the
role of the eigenvalue plays the growth rateG2. OperatorL̂
is a product of two second order differential operators t
are invariant with respect to space reversal and consequ
the eigenfunctions must have even or odd parity. Anot
useful information for finding a good test function is know
edge of the marginally stable solutions representing the
tersection points of the dispersion curvesG2(m) with m axis.
These solutions can be found from the Eq.~22! for G50

L̂1a~y!5L̂2b~y!50. ~26!

For the local marginally states with the discrete eigenval
two even solutions can be found for the cutoff values of
parameterm

a~y!50, b~y!51/cosh~y! for m50, ~27!

a~y!51/cosh2~y!, b~y!50 for m53. ~28!

The simplest choice of the test functionsã(y) and b̃(y)
based on the previous consideration with two variational
rametersa andb is

ã~y!5a/cosh2~y!, b̃~y!5b/cosh~y!. ~29!

Introduction of the test functionsã(y) and b̃(y) into the
Lagrangian~24! leads to the following equation for the ac
tion integral

S52a2S m

3
21D2mb21Gab

p

2
, ~30!

and the dispersion relationG2(m) is obtained from the con
ditions ]S/]a5]S/]b50.

G2~m!5
32

p2 mS 12
m

3 D . ~31!

Finally, replacing the parameterm defined with Eq.~13!
we have a detailed structure of the instability growth rate
array soliton solution of the CDNLS equation

G5
8& sin~s/2!A2l224 sin2~s/2!

A3pl2
~32!

C. Numerical solution

The eigenvalue Eq.~22! are solved numerically. The pa
ity of the solution~even! and the restriction on the squa
integrable perturbations enable us to look for the solution
the system~22! in the interval@0, `! with the boundary con-
ditions
02660
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da~y!

dy U
y50

5
db~y!

dy U
y50

50,

a~`!5b~`!50. ~33!

The set of eigenvalues and corresponding eigenfunct
satisfying the above boundary conditions are calculated w
the ‘‘shooting method’’@20# adapted here for our problem
Numerically calculated growth ratesG~l! together with the

FIG. 1. Comparison of analytically and numerically calculat
normalized growth ratesG as a function of the soliton amplitudel
for different number of array elements.
4-4
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results from the analytical solution~32! for arrays with three
different number of elements (N53;15;41), are ploted in
Fig. 1. A good agreement between the results is obvi
indicating that our choice of the test functions for the var
tional approach was successful. As an illustration we plo
Fig. 2, the test functions~29! together with the numerically
calculated eigenfunctions forN515. Results show a bette
agreement near the marginally stable states then inside
instability region.

FIG. 2. Eigenfunctions for the array with 15 elements for d
ferent values ofl: ~a! l50.24 (G'0), near the first marginally
stable state:~b! l5100 (G'0), near the second marginally stab
state;~c! l50.35 (G'1.54), between two marginally stable state
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The whole previous analysis is devoted to the case
circularly arranged array using periodic boundary conditio
However, a question of possibilities to apply some of the
results to the case of open~linearly arranged! arrays naturally
arises. Analytical estimates based on the continuum appr
mation for the threshold of initiation the quasicollapse p
cess in linearly arranged NFA with a Gaussian initial pulse
both dimensions, continuous and discrete, is given in R
@7#. Here, we will try to find a threshold for the initial puls
in a form of uniformly distributed solitons~6! along the array
elements. It corresponds to the situation where an circ
array with a stationary pulse in a form of array solitons
opened between two arbitrary array elements. In this sit
tion the array soliton solution of the circular array config
ration no longer satisfy CDNLS equation with a new boun
ary configuration~open array!. To check the pulse dynamic
in this configuration we have performed numerical simu
tions of CDNLS equation based on the split-step Four
method. Numerical results show existence of the threshol
initiation quasicollapse process that coincides with the ins
bility condition ~21! for the case of circular array. Th
matching of the thresholds is practically exact when
number of array elements exceeds 15, as shown in Fig.

.

FIG. 3. Analytically and numerically calculated instabilit
threshold values.

FIG. 4. Evolution of the maximal amplitude in the central (c8)
and its neighbor (c7) element.
4-5
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The initially uniformly distributed~along the array ele-
ments! pulse energy during the quasicollapse process is c
centrating in the middle elements of the array evolving
ward the stationary state in a form of multidimension
soliton @9#. An illustration of this dynamics for an open arra
with 15 elements is shown in Fig. 4.

IV. CONCLUSION

In this work we have studied in detail the problem of t
stability of the soliton array solution of CDNLS equatio
. E

k,

k,
st

.

k,

02660
n-
-
l

with periodic boundary conditions~circular array!. By virtue
of the variational approach originally used for the corr
sponding continuous problems we have recovered the re
for the instability threshold@11,13# and obtained a detai
structure of the instability growth rate. Analytical resul
have been checked numerically and a good agreement
been found.

In addition we have proved numerically that the resu
for the instability threshold for the circular array is app
cable to obtain a quasicollapse threshold for the case of o
arrays with the initial pulses in a form of array solitons.
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