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Modulation instability in two-dimensional nonlinear Schrödinger lattice models
with dispersion and long-range interactions

Ljupčo Hadžievski, Milutin Stepić, and MilošM. Škorić
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The problem of modulation instability of continuous wave and array soliton solutions within the framework
of a two-dimensional continuum-discrete nonlinear Schro¨dinger lattice model, which accounts for dispersion
and long-range interactions between elements, is investigated. The linear stability analysis based on an energy
principle and a variational approach, which were originally developed for the continuum nonlinear Schro¨dinger
model, is proposed. Regions of instability are identified and analytical expressions for the corresponding
thresholds and the growth rate spectra are calculated.
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I. INTRODUCTION

Mathematical models describing dynamical properties
the systems with interplay between nonlinearity, discre
ness, and dispersion attract a growing interest due to t
rich applicability in different physical problems. There a
many nonlinear physical systems which are both discrete
continuous, such as nonlinear fiber arrays~NFA!,1–13 arrays
of coupled Josephson’s junctions14,15 elastic energy transfe
in anharmonic crystals,16,17 DNA molecule chains, etc. Suc
systems show a complex dynamical behavior exhibiting
verse physical properties like wave instabilities, solitonli
localized structures, quasi-collapse~blowup solutions!, pat-
tern formation, and spatiotemporal chaos. Mathemat
modeling of these systems often leads to one of the disc
or continuum-discrete variants of the universal nonlin
evolution equations such as nonlinear Schro¨dinger ~NLS!,
sine-Gordon, Korteweg–de Vries, Klein-Gordon, a
Kadomtsev-Petviashvili equations. The simplest and a
most extensively studied are NLS models. In the phys
situation where the dispersion along the lattice elements
be neglected, the NLS lattice model is described by the
crete NLS~DNLS! equation where dynamical properties
the system are determined by an interplay between non
earity and discreteness. Incorporation of the dispersion a
the lattice elements into the NLS lattice model leads to
more complicated continuum-discrete NLS~CDNLS! type of
equation, where dynamical properties of the system are
termined by an interplay between nonlinearity, discreten
and dispersion. The CDNLS models were intensively stud
mainly for one-dimensional~1D! NLS lattices with short-
range ~nonlocal! interactions by using a nearest-neighb
approximation.4–9,11–13,18,19Two-dimensional ~2D! lattices
based on the CDNLS model were studied in Refs. 4 an
and within the DNLS model in Refs. 20–23. However, som
physical systems cannot be described in the framework
nearest-neighbor approximation and the effect of long-ra
interactions between the lattice elements must be taken
account. Examples are DNA molecule chains with lon
range Coulomb interactions, excitation transfer in molecu
crystals and vibron energy transport in biopolymers w
dipole-dipole interactions. The effects of long-range disp
0163-1829/2003/68~1!/014305~8!/$20.00 68 0143
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sive interactions in the 1D DNLS lattice model was inves
gated in Refs. 24–26. The long-range interaction model w
a power law dependence on the distance between intera
elements was used in Ref. 24. A modified interaction mo
in a form of Joncqie`re’s function convenient to cover differ
ent physical situations from nearest-neighbor interaction
ultra-long-range interactions was discussed in Ref. 25.
dynamics of the 2D DNLS lattice model with long-rang
dipole-dipole interactions was studied in Ref. 27. To o
knowledge, the present paper is a rare attempt to ana
properties of 2D~also 1D! lattices within CDNLS models
accounting for dispersion and long-range interactions.

The goal of this work is to investigate an important pro
lem of modulation instability of continuous wave~cw! and
array soliton~AS! solutions in the framework of a genera
continuum-discrete nonlinear Schro¨dinger ~CDNLS! lattice
model describing dynamics in a 2D lattice with dispersi
and long-range interactions between elements. In Sec. II
define the basic evolution equation and give the continu
wave ~cw! and array soliton solutions of the model. In Se
III we describe a linear stability analysis based on an ene
principle and variational approach which were originally d
veloped for the continuum NLS models.28,29 We obtain ex-
plicit analytical expressions for the instability thresholds a
the growth rate spectra which also recover results for
lattices and the nearest-neighbor interaction model. Fina
we summarize our results in Sec. IV.

II. THE MATHEMATICAL MODEL

The basic mathematical model describing the tw
dimensional lattice with nonlocal nonlinear interacting e
ments in anomalous dispersion regime has a form
continuum-discrete nonlinear Schro¨dinger equation

i
]c rW

]t
1

]2c rW

]z2
12c rWuc rWu21 (

r 8W (r 8WÞrW)

Jur 8W2rWu~c r 8W2c rW!50,

~1!

where rW5(n,m,0)(n50,61,62, . . . ,N; m50,61,
62, . . . ,M ) is the discrete lattice vector in ax-y plane,z is
the spatial continuous coordinate along the lattice eleme
and c rW5cn,m is the wave function into the (n,m)th lattice
©2003 The American Physical Society05-1
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element. The nonlocal interaction termJur 8W2rWu describes a
long-range isotropic coupling between lattice elements
depends on the distance between interacting elements.
interaction model is quite general and enables a mathem
cal modeling of a variety of discrete dispersive physical s
tems with long-range interactions. The well-known intera
tion model for the 1D DNLS lattice model with a power la
dependence on the distance between interacting elem
was originally proposed in Ref. 24. In our case, for t
CDNLS model~1! with a regularly spaced 2D lattice wit
interelement distance equal to 1, the power law depende
can be written in the form

Jur 8W2rWu5
1

ur 8W2rWup
. ~2!

This interaction model can conveniently describe a w
class of different discrete dispersive physical systems wi
long-range isotropic interactions, such as: DNA molec
chains with a long-range Coulomb interaction (p51),
propagation of optical pulses in nonlinear fiber arrays, a
excitation transfer in quasi-two-dimensional molecule cr
tals (p53). On the other hand, for the sufficiently larg
exponentp, the model Eq.~1! exhibits the same qualitativ
features as the CDNLS equation with nearest-neighbor in
actions.

The CDNLS equation~1! has a Hamiltonian structure an
can be written as

i
]c rW

]t
5

dH

dc rW
*

, ~3!

whereH is the Hamiltonian defined by

H5 (
rW

E
2`

` S (
r 8W (r 8WÞrW)

Jr 8W2rW~c r 8W2c rW!c rW
*

1u~c rW!zu22uc rWu4D dz, ~4!

where indexz stands for the partial derivative with respect
variablez.

The number of quantaP (L2 norm! is another conserved
quantity of the Eq.~1!

P5 (
rW

E
2`

`

uc rWu2dz. ~5!

For the lattice with periodic boundary conditions impos
on the discrete dimensionsrW we can consider a set of lattic
independent stationary solutions of Eq.~1! in the form

c rW5 f ~z!eil2t, ~6!

where l is a real parameter. We shall restrict our stabil
study to two particularly simple and most frequently stud
stationary solutions: the first one is a uniform, continuo
wave ~cw! solution f cw5l/A2, while the second one is a
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array soliton~AS!, given by f as5l/ cosh (lz). In both cases
the parameterl is related to the amplitude of the wave fun
tion.

III. STABILITY ANALYSIS

In order to study the stability property of stationary sol
tions~6! we introduce small modulations, in a form of squa
integrable, perturbations

c rW~x,t !5@ f ~z!1d f rW~z,t !#eil2t, ud f rWu!u f u. ~7!

Substituting Eq.~7! into Eq. ~1! and linearizing with re-
spect to small perturbationsd f rW , we arrive at

i
]d f rW

]t
1

]2d f rW

]z2
2l2d f rW14u f u2d f rW12u f u2d f rW

*

1 (
r 8W (r 8WÞrW)

Jr 8W2rW~d f r 8W2d f rW!50. ~8!

To find sufficient conditions for the linear instability w
will assume perturbations with a simple harmonic dep
dence on the discrete dimensionsrW in a form5

d f rW~z,t !5~a1 ib ! cos~knn! cos~kmm!, ~9!

wherekn52p/(2N11) andkm52p/(2M11) are discrete
wave numbers. From Eq.~8! with perturbations~9!, the fol-
lowing eigenvalue problem is obtained:

]b~z,t !

]t
52L̂1a~z,t !,

~10!

]a~z,t !

]t
5L̂2b~z,t !.

The linear second-order differential operatorsL̂6 are de-
fined by

L̂152
]2

]z2
1l226 f 2~z!14 S ~N,M !,

~11!

L̂252
]2

]z2
1l222 f 2~z!14 S ~N,M !.

The complete discrete properties of the system descr
by the operatorsL̂6 are taken into account through the inte
action termS (N,M ). It is straightforward to obtain the ex
pression forS (N,M ) from the nonlocal interaction’s~last!
term in Eq~8!, after making the substitution of the perturb
tion, given by the explicit formula~9!
5-2
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S~N,M !5 (
n51

N

Jn,0 sin2 S knn

2 D1 (
m51

M

J0,m sin2 S kmm

2 D
2 (

n51

N

(
m51

M

Jn,m@ cos~knn! cos~kmm!21#.

~12!

The interaction term~12! depends on the lattice dimension
and the form of interaction between lattice elements.

A. Stability of the cw solution

For the case of cw solution (f cw5l/A2) the differential
operators~11! are homogeneous and stability analysis
straightforward. The Fourier transform (e2 ivt1 ikz) of Eqs.
~10! gives the following dispersion relation:

v25~k214 S!~k222l214 S!. ~13!

The instability occurs forv2,0, which leads to the follow-
ing instability threshold:

l2.
k2

2
12 S~N,M !. ~14!

As seen from Eq.~14!, the lowest threshold is for an
excitation of small wave-number~long-wavelength! pertur-
bations corresponding to the modulation instability. Disp
sion relation~13! and the instability threshold~14! according
to the dimensionality of the lattice~one-dimensional or two-
dimensional! and type of the interaction~nearest-neighbor o
long-range interactions! is represented by four explicit ana
lytical expressions:

(a) One-dimensional lattice rW5(n,0,0) with nearest-
neighbor interactions:

v25Fk214 sin2 S kn

2 D GFk214 sin2 S kn

2 D22l2G , ~15!

l2.
k2

2
12 sin2 S p

2N11D . ~16!

Results given by relations~15! and ~16! coincide to the
corresponding ones obtained in Refs. 5 and 9.

(b) One-dimensional lattice rW5(n,0,0) with long-range
interactions:The instability threshold in this case reads

l2.
k2

2
12 (

n51

N

Jn sin2 S p

2N11
nD . ~17!

For the interaction model with a power law dependen
on the distance between interacting elements~2!, such as
Jn51/np, the instability threshold~17! reads

l2.
k2

2
12 (

n51

N sin2 S p

2N11
nD

np
. ~18!
01430
-

e

The instability thresholdlc for long-range interactions a
a function of the size of the 1D lattice~N! for different values
of p is plotted in Fig. 1. The curve forp55 practically
corresponds to the result~16! for the nearest-neighbor inter
actions model. The above results show that due to the
creased inertia of the system the instability threshold for
long-range interactions is higher than the correspond
threshold for the nearest-neighbor interactions.

(c) The two-dimensional lattice rW5(n,m,0) with nearest-
neighbor interactions:The instability threshold for this cas
reads

l2.
k2

2
12F12 cosS kn2km

2 D cosS kn1km

2 D G . ~19!

For highly elongated 2D lattices, withN@M , perturbations
dominantly develop along the longer dimension of the latt
and the instability threshold~19! approaches values for th
instability threshold for 1D lattices~16!.

(d) The two-dimensional lattice rW5(n,m,0) with long-
range interactions:

l2.
k2

2
12H (

n51

N

Jn,0 sin2 S knn

2 D1 (
m51

M

J0,m sin2 S kmm

2 D
2 (

n51

N

(
m51

M

Jn,m@ cos~knn! cos~kmm!21#J . ~20!

For the interaction model with a power law dependence
the distance between the interacting elements~2!, Jn,m
51/(n21m2)p/2, the instability threshold~20! becomes

l2.
k2

2
12H (

n51

N
sin2 ~knn/2!

np
1 (

m51

M
sin2 ~kmm/2!

mp

2 (
n51

N

(
m51

M
@ cos~knn! cos~kmm!21#

~n21m2!p/2 J . ~21!

FIG. 1. Dependence of the instability thresholdlc on the size of
the one-dimensional latticeN, with long-range interactions for dif-
ferent values ofp.
5-3
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The instability thresholdlc for long-range interactions a
a function of the size of the 2D lattice (N,M ) for p53 is
presented in Fig. 2. The valuep53 corresponds to the cas
of isotropic dipole-dipole interactions discussed in Ref.
for two-dimensional DNLS lattice model. The instabilit
threshold decreases with the size of the lattice and ha
minimum for the square latticeN5M . Increasingp leads to
a decrease oflc and for large values ofp approaches the
result given by Eq.~19! for the nearest-neighbor interaction
model. As seen on inspection, the dispersion term in Eq.~1!
increases the cw instability threshold~more stable!; the effect
which vanishes for the long-wavelength perturbation.

B. Stability of array soliton solutions

Stability analysis of AS solutions becomes more comp
cated due to an explicitz dependence of the differential op
eratorsL̂6 . However, the fact that the discrete properties
the system are incorporated into the operatorsL̂6 only via
the S(N,M ) term, enables a direct application of the ma
ematical methods developed for stability analysis of c
tinuum models. To calculate the instability threshold and
tailed spectra of the growth rate, we generalize and appl
our 2D CDNLS model13 an energy principle by Laedke an
Spatschek28 and a variational method by Rypdal an
Rasmussen,29 which were originally introduced for stability
studies of the continuum NLS equation solutions.

The energy principle is applicable when the lineariz
evolution equations with respect to perturbations~10! can be
written in a standard formL̂2

21att52L̂1a with L̂2
21 positive

definite. For this case the positive definiteness of the oper
L̂1 is a necessary and sufficient condition for the Ljapun
stability of the system. The detailed proof is given in Re
28 and 29. However, for CDNLS, in the derivation of E
~10! we have assumed perturbations~9! with a simple har-
monic dependence on the discrete variables (n,m). Strictly,
while for continuum models harmonic perturbation ans

FIG. 2. The instability thresholdlc as a function of the size o
the two-dimensional lattice (N,M ) with long-range interactions fo
p53.
01430
7

a

-

f

-
-
-
to

or
v
.

z

provides a complete basis~Fourier space! for the general
perturbations; this is not a case for discrete models. It b
cally means that in our case the applied energy principle
give necessary and sufficient conditions for the stability u
der the assumed type of discrete perturbations~9!.

For our further calculations it is convenient to substitu
lz→z and to express operatorsL̂6 in the form

L̂15l2~Ŝ11m25!,

L̂25l2~Ŝ21m21!, ~22!

wherem is the parameter containing information about t
discreteness of the system, defined by

m5
4 S

l2
, ~23!

and Ŝ6 are Sturm-Liouville-type operators

Ŝ152
]2

]z2
16 tanh2 ~z!,

~24!

Ŝ252
]2

]z2
12 tanh2 ~z!.

These operators possess a well-known spectra.30 The small-
est eigenvaluess6

(0) and corresponding eigenfunctionsc6
(0)

in the discrete part of the spectrum are

s2
(0)51; c2

(0)51/ cosh~z!,
~25!

s1
(0)52; c1

(0)51/ cosh2 ~z!.

The procedure of the energy principle described in Re
28 and 29 demands one to find regions of the parametem

where operatorsL̂6 are positive definite or indefinite. Sinc
the Sturm-Liouville operatorsŜ6 are positive definite and
possess only positive eigenvalues, it is straightforward
find that the operatorL̂2 is positive definite form.0, while
the operatorL̂1 is indefinite for 0,m,3 and positive defi-
nite for m.3. According to the energy principle,29 the suf-
ficient conditions for the instability are satisfied in the regi
0,m,3, where the operatorL̂1 is indefinite. The system is
stable under the assumed perturbations~9! for m.3, where
operatorsL̂6 are positive definite. These results lead to t
next instability condition

l.lc5
2A S~N,M !

A3
. ~26!

If we compare the above instability threshold for AS s
lutions with the threshold for CW solutions given by Eq.~14!
it becomes obvious that fork50 the difference comes only
within a numerical factorA2/3'0.8165. It means that al
corresponding explicit results for the instability threshol
5-4
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for AS solutions can be derived from the expressions gi
by Eqs. ~14!–~21! for the instability thresholds of the cw
solutions; by takingk50 and just multiplying by a factor
0.8165. It also means that the shapes of the curves displ
in Figs. 1 and 2 are the same as in the case of AS soluti
For the 1D lattice with nearest-neighbor interactions, E
~26! readily recovers earlier results obtained in Refs. 5,
and 13.

The application of the above energy principle to the s
bility of AS solutions proves the existence of exponentia
growing modes and gives the threshold value~26!, without
providing any further insight. Therefore, in order to calcula
the growth rate spectral structure of the instability, we ap
a variational approach, originally introduced for the co
tinuum NLS equation in Ref. 29 and first generalized to
continuum-discrete 1D NLS equation with nearest-neigh
interactions, by these authors.13 For the normal exponentially
growing modesa(t,z)5a(z) exp (gt); b(t,z)5b(z) exp (gt)
with the growth rateg, the eigenvalue equations~10! after
the substitutionlz→z are transformed into
01430
n

ed
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L̂1a~z!52Gb~z!,
~27!

L̂2b~z!5Ga~z!,

where G5g/l2 is the normalized growth rate. The abov
equations can be derived from the variation of the action

dS5dE
2`

`

L~a,az ,b,bz ,z!dz, ~28!

where the LagrangianL is given by

L5
1

2
~az

21bz
2!1Fm11

2
2

3

cosh2 ~z!
Ga2

1F2
m11

2
1

1

cosh2 ~z!
Gb21Gab. ~29!
ge
FIG. 3. Dependence of the growth ratesG on the soliton amplitudel for three different one-dimensional lattices with long-ran
interactions:~a! N52, ~b! N58, and~c! N520.
5-5
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HADŽIEVSKI, STEPIĆ, AND ŠKORIĆ PHYSICAL REVIEW B 68, 014305 ~2003!
The basic idea of the variational approach is to defin
set of test functionsã(z) and b̃(z) with some variational
parameters and to calculate the action integralS. It is obvious
that with this approach, obtained results will critically d
pend on our choice of the test functions. It was shown a
also numerically confirmed in Refs. 13 and 29 that a go
choice for the test functions are eigenfunctions of Eqs.~27!
for the marginally stable states (G50).

a~z!50, b~z!5
1

cosh~z!
, m50

~30!

a~z!5
1

cosh2 ~z!
, b~z!50, m53.

Assuming test functions with two variational paramete
a andb in the form

FIG. 4. Growth ratesG of the instability of the array soliton
solution with amplitudel50.5, as a function of the size of th
two-dimensional lattice (N,M ), with long-range interactions forp
53: ~a! surfaceG(N,M ); ~b! corresponding gray scale map of th
projection on theN-M plane.
01430
a

d
d

s

ã~z!5
a

cosh2 ~z!
, b̃~z!5

b

cosh~z!
, ~31!

we calculate the action integral

S52a2S m

3
21D2mb21

p

2
Gab. ~32!

The following expression for the growth rate structure

G2~m!5
32

p2
mS 12

m

3 D , ~33!

is obtained after variation of Eq.~32!, from the conditions
]S/]a5]S/]b50.

The instability thresholdlc corresponds to the marginall
stable modeG50 in the dispersion relation~33!. The expres-
sion for the threshold calculated from Eq.~33! coincides, as
expected, with the expression~26! obtained by applying the
energy principle.

The dispersion relation~33! has the same structure as r
sults given in Ref. 29 for the continuum NLS equation and
Ref. 13 for the 1D CDNLS equation with nearest-neighb
interactions model, because complete discrete propertie
the system are incorporated only via the parameterm, which
is defined by Eq.~23!. Replacing the particular expression
for m into Eq. ~33! for lattices with different dimensionality
~one-dimensional or two-dimensional! and type of the inter-
actions~nearest-neighbor or long-range interactions! we can
readily obtain explicit formulas for the corresponding grow
rate structure.

(a) One-dimensional lattice rW5(n,0,0) with nearest-
neighbor interactions:

G5
8A2

l2pA3
sinS p

2N11DA3l224 sin2 S p

2N11D .

~34!

(b) One-dimensional lattice rW5(n,0,0) with long-range
interactions:

G5
8A2

l2pA3
A(

n51

N

Jn sin2 S p

2N11
nD

3A3l224 (
n51

N

Jn sin2 S p

2N11
nD . ~35!

For the interaction model with a power law dependen
on the distance between interacting elements~2!, Jn51/np

the growth rate~35! reads
5-6
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G5
8A2

l2pA3
A(

n51

N sin2 S p

2N11
nD

np

3A3l224 (
n51

N sin2 S p

2N11
nD

np
. ~36!

Figures 3~a!–~c! show the dependence of the growth ra
il
ta
o
g

ion
by
o
S
bl
ilit
LS

01430
G on the soliton amplitude, for three different 1D lattices:~a!
N52, ~b! N58, and ~c! N520. The curves for largep
practically correspond to the results for the nearest-neigh
interactions model.13 The growth rate is less sensitive to th
variation ofp for the lattices with lower number of elemen
and for N51 ~one-dimensional lattice with three element!
all curves degenerate into a single one which coincides w
the growth rate for the nearest-neighbor interactions mod

(c) Two-dimensional lattice rW5(n,m,0) with nearest-
neighbor interactions:
G5
8A2

l2pA3
A12 cosS p

kn2km

2 D cosS p
kn1km

2 DA3l22414 cosS p
km2kn

2 D cosS p
kn1km

2 D . ~37!

(d) Two-dimensional lattice rW5(n,m,0) with long-range interactions:

G5
8A2

l2pA3
A(

n51

N

Jn,0 sin2 ~knn/2!1 (
m51

M

J0,m sin2 ~kmm/2!2 (
n51

N

(
m51

M

Jn,m@ cos~knn! cos~kmm!21#

3A3l224H (
n51

N

Jn,0 sin2 ~knn/2!1 (
m51

M

J0,m sin2 ~kmm/2!2 (
n51

N

(
m51

M

Jn,m@ cos~knn! cos~kmm!21#J . ~38!

For the interaction model with a power law dependence on the distance~2! Jn,m51/(n21m2)p/2, the growth rate~38! reads

G5
8A2

l2pA3
A(

n51

N
sin2 ~knn/2!

np
1 (

m51

M
sin2 ~kmm/2!

mp
2 (

n51

N

(
m51

M
cos~knn! cos~kmm!21

~n21m2!p/2

3A3l224F (
n51

N
sin2 ~knn/2!

np
1 (

m51

M
sin2 ~kmm/2!

mp
2 (

n51

N

(
m51

M
cos~knn! cos~kmm!21

~n21m2!p/2 G . ~39!
ce
n-
be-
for

-
bor
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nd-
ms
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col-
In Figs. 4~a! and 4~b! we show the growth rateG for the
instability of the array soliton with the amplitudel50.5 as a
function of the size of the two-dimensional lattice (N,M )
with long-range interactions forp53. Figure 4~a! represents
the surfaceG(N,M ), while Fig. 4~b! is the corresponding
gray scale map of the projection on theN–M plane. The
black area in Fig. 4~b! is the region below the instability
threshold.

IV. CONCLUSION

In this work, we have analytically studied detailed stab
ity properties of the continuous wave and array soliton s
tionary solutions in the framework of the general model
two-dimensional nonlinear lattices with dispersion and lon
range interactions, described by the 2D CDNLS equat
The linear stability of the array soliton solution is solved
applying the energy principle and the variational meth
which were originally developed for the continuum NL
equation.28,29 We have found above solutions to be unsta
and have calculated explicit expressions for the instab
thresholds and growth rate spectra valid for the 2D CDN
-
-

f
-
.

d

e
y

lattice with a long-range isotropic coupling between latti
elements. Explicit formulas for the long-range isotropic i
teractions with a power law dependence on the distance
tween interacting elements are also derived. Our results
highly elongated 2D lattices with largep recover the expres
sion for the one-dimensional lattice with nearest-neigh
interactions, obtained in earlier papers.4,5,9,13,18 This study
seems to be the first attempt to address the stationary s
tion stability in 2D lattices within the CDNLS model with
dispersion and long-range interactions. Therefore, our fi
ings can be particularly relevant to different physical syste
modelled by 2D DNLS and CDNLS lattices models wi
long-range interactions, e.g., nonlinear optical fib
arrays,1–13 DNA molecule chains,31 molecular crystal
excitation,32 and vibron transport in biopolimers,33 etc.

The results presented in our study are based on the li
stability analysis and indicate a presence of small expon
tially growing modes in the system, giving no predictions
the subsequent nonlinear evolution stage. Based on the
sults for 1D and 2D CDNLS lattice models with neare
neighbor interactions4,5,13 and for 2D DNLS lattice models
~without dispersion! with long-range interactions,21–23,27it is
plausible to expect a nonlinear development of the quasi
5-7
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lapse process4,5 and solitary structures localized in both co
tinuum and discrete dimensions~continuum-discrete solitary
waves!. A detail study of these problems in the framework
the 2D CDNLS lattice model with long-range interactions
well as the problem of stability of multidimensiona
continuum-discrete solitary waves is planned to be given
separate publication.
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