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Modulation instability in two-dimensional nonlinear Schrodinger lattice models
with dispersion and long-range interactions
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The problem of modulation instability of continuous wave and array soliton solutions within the framework
of a two-dimensional continuum-discrete nonlinear Sdhrger lattice model, which accounts for dispersion
and long-range interactions between elements, is investigated. The linear stability analysis based on an energy
principle and a variational approach, which were originally developed for the continuum nonlineadigaro
model, is proposed. Regions of instability are identified and analytical expressions for the corresponding
thresholds and the growth rate spectra are calculated.
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[. INTRODUCTION sive interactions in the 1D DNLS lattice model was investi-
gated in Refs. 24-26. The long-range interaction model with

Mathematical models describing dynamical properties ofa power law dependence on the distance between interacting
the systems with interplay between nonlinearity, discrete€lements was use\d in Ref. 24. A modified interaction model
ness, and dispersion attract a growing interest due to theif @ form of Joncqiee’s function convenient to cover differ-
rich applicability in different physical problems. There are ent physical situations from nearest-neighbor interactions to
many nonlinear physical systems which are both discrete angltra-long-range interactions was discussed in Ref. 25. The
continuous, such as nonlinear fiber arréysA), B arrays  dynamics of the 2D DNLS lattice model with long-range
of coupled Josephson’s junctidfid® elastic energy transfer dipole-dipole interactions was _stud|ed in Ref. 27. To our
in anharmonic crystaf$*’ DNA molecule chains, etc. Such knowle(_jge, the present paper Iis a rare attempt to analyze
systems show a complex dynamical behavior exhibiting giProperties of 2D(also 1D lattices within CDNLS models

verse physical properties like wave instabilities, solitonlike""CCOl"mIng for dispersion and long-range interactions.

localized structures, quasi-collapéslowup solutions, pat- The goal of this work is to investigate an important prob-
= P P P lem of modulation instability of continuous wavew) and

tern fprmanon, and spatiotemporal chaos. Mathemahca(lmay soliton(AS) solutions in the framework of a general
modeling of these systems often leads to one of the discre ntinuum-discrete nonlinear Sékinger (CDNLS) lattice

or continuum-discrete variants of the universal nonlinear,qqe| describing dynamics in a 2D lattice with dispersion
evolution equations such as nonlinear Sdmger (NLS),  and |ong-range interactions between elements. In Sec. Il we
sine-Gordon, Korteweg—de Vries, Klein-Gordon, andgefine the basic evolution equation and give the continuous
Kadomtsev-Petviashvili equations. The simplest and als@uave (cw) and array soliton solutions of the model. In Sec.
most extensively studied are NLS models. In the physicalj| we describe a linear stability analysis based on an energy
situation where the dispersion along the lattice elements cagrinciple and variational approach which were originally de-
be neglected, the NLS lattice model is described by the disveloped for the continuum NLS modé%® We obtain ex-
crete NLS(DNLS) equation where dynamical properties of plicit analytical expressions for the instability thresholds and
the system are determined by an interplay between nonlirthe growth rate spectra which also recover results for 1D
earity and discreteness. Incorporation of the dispersion alonigttices and the nearest-neighbor interaction model. Finally,
the lattice elements into the NLS lattice model leads to ave summarize our results in Sec. IV.

more complicated continuum-discrete NISDNLS) type of

equation, where dynamical properties of the system are de- Il. THE MATHEMATICAL MODEL

termined by an interplay between nonlinearity, discreteness, ) ] o

and dispersion. The CDNLS models were intensively studied The basic mathematical model describing the two-
mainly for one-dimensional1D) NLS lattices with short- dlmen5|_onal lattice with r_10n|oc_a| nonll_near interacting ele-
range (nonloca) interactions by using a nearest-neighborMents in anomalous dispersion regime has a form of
approximatiorf:~911-131819Tyyo_dimensional (2D) lattices continuum-discrete nonlinear Scllinger equation

based on the CDNLS model were studied in Refs. 4 and 5 o P

and within the DNLS model in Refs. 20-23. However, some ,7%r , 7 ¥r 20 S 37 i (= ) =0,

physical systems cannot be described in the framework of = gt =~ 522 _ =

nearest-neighbor approximation and the effect of long-range rEn 1)
interactions between the lattice elements must be taken into .

account. Examples are DNA molecule chains with long-where r=(n,m0)(n=0,+1,+2,...N; m=0,+1,

range Coulomb interactions, excitation transfer in moleculart 2, ... M) is the discrete lattice vector in>ay plane,z is
crystals and vibron energy transport in biopolymers withthe spatial continuous coordinate along the lattice elements,
dipole-dipole interactions. The effects of long-range disperand ;= ¢, r, is the wave function into then(m)th lattice
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element. The nonlocal interaction terdyi ;| describes a array soliton(AS), given byf,s=\/ cosh {2). In both cases
long-range isotropic coupling between lattice elements anghe parametex is related to the amplitude of the wave func-
depends on the distance between interacting elements. Thign.

interaction model is quite general and enables a mathemati-

cal modeling of a variety of discrete dispersive physical sys-

tems with long-range interactions. The well-known interac- lll. STABILITY ANALYSIS

tion model for the 1D DNLS lattice model with a power law |4 order to study the stability property of stationary solu-

dependence on the distance between interacting elemenigns6) we introduce small modulations, in a form of square
was originally proposed in Ref. 24. In our case, for thejntegrable, perturbations

CDNLS model(1) with a regularly spaced 2D lattice with
interelement distance equal to 1, the power law dependence

2
can be written in the form gixH)=[f(2)+sf;(z,)1e™, |ofi<fl. (D)
o1 Substituting Eq(7) into Eq. (1) and linearizing with re-
Jlr’—r\_lﬁ_ﬂp- 2 spect to small perturbation$f;, we arrive at
This interaction model can conveniently describe a wide ast;  2of;
class of different discrete dispersive physical systems with a i— —N28f;+4|f|2 5+ 2|f|25*
long-range isotropic interactions, such as: DNA molecule 9z
chains with a long-range Coulomb interactiop=(1),
propagation of optical pulses in nonlinear fiber arrays, and + Z _j(6f7—6f)=0. €]
excitation transfer in quasi-two-dimensional molecule crys- NGED

tals (p=3). On the other hand, for the sufficiently large

exponentp, the model Eq(1) exhibits the same qualitative  To find sufficient conditions for the linear instability we
features as the CDNLS equation with nearest-neighbor intekyill assume perturbations with a simple harmonic depen-

actions. . . L=
. _— dence on the discrete dimensiani a forn?
The CDNLS equatioril) has a Hamiltonian structure and

can be written as )
S6fi(z,t)=(a+ib) cos(k,n) cos(k,m), 9

;oM

o - (3  wherek,=2#/(2N+1) andk,=2#7/(2M+1) are discrete
Sy wave numbers. From E@8) with perturbationg9), the fol-

whereH is the Hamiltonian defined by lowing eigenvalue problem is obtained:

% db(z,t) -
H=meLZwaWHwﬁ - =~ L.,
r r’(r' #r) (10
da(z,t) .
+|(t//;)z2—|t/f;4)dz, (4) - =L.b@b).

where indexz stands for the partial derivative with respectto  1hq |inear second-order differential operatﬁrs are de-
variablez. fined by B

The number of quant® (L2 norm) is another conserved
quantity of the Eq(1)

P=2 J_le;

(92
[,=——+\*-6f%(2)+43 (N,M),
2dz. 5 7

11

For the lattice with periodic boundary conditions imposed A 2

J
. . - . . == —+\2=2f%(2)+ .
on the discrete dimensiomswe can consider a set of lattice L 972 Nm2i(2) T4 2 (N M)
independent stationary solutions of Ed) in the form

zp*:f(z)ei“zt ©) The completg discrete properties of the system described

' ’ by the operators .- are taken into account through the inter-
where\ is a real parameter. We shall restrict our stability action termX (N,M). It is straightforward to obtain the ex-
study to two particularly simple and most frequently studiedpression for2 (N,M) from the nonlocal interaction’das?
stationary solutions: the first one is a uniform, continuousterm in Eq(8), after making the substitution of the perturba-
wave (cw) solution f.,=\/+/2, while the second one is an tion, given by the explicit formul#9)

014305-2
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N o[ kpn M o[ kem
S(N,M)= > Jnosmz(—)Jr > Jomsi?| —=—
n=1 ’ 2 m=1 ! 2
M

-2

Jn.ml cos(knn) cos(k,m)—1].
n=1

=1

12

The interaction ternf{12) depends on the lattice dimensions
and the form of interaction between lattice elements.

A. Stability of the cw solution

For the case of cw solutionf {,=\/+/2) the differential
operators(11) are homogeneous and stability analysis is
straightforward. The Fourier transforne {“'*'%?) of Egs.
(10) gives the following dispersion relation:

w?=(k2+43)(k?—2\2+43). (13

The instability occurs fomw?<0, which leads to the follow-
ing instability threshold:

2

k
)\2>?+22(N,M). (14)

As seen from Eq(14), the lowest threshold is for an
excitation of small wave-numbedfong-wavelength pertur-

bations corresponding to the modulation instability. Disper-

sion relation(13) and the instability thresholdl4) according
to the dimensionality of the lattic@ne-dimensional or two-
dimensional and type of the interactiomearest-neighbor or
long-range interactionss represented by four explicit ana-
lytical expressions:

(a) One-dimensional Iatticeezr(n,0,0) with nearest-
neighbor interactions:

w?’=

k2+4 sinz(%”

k2+ 4 sir? (%) —2>\2}, (15)

|

Results given by relation€l5) and (16) coincide to the
corresponding ones obtained in Refs. 5 and 9.

(b) One-dimensional lattice = (n,0,0) with long-range
interactions: The instability threshold in this case reads

2

)\2>E +2 sir?

(16)

T
2N+1

2 N

k
A2>—+2 > J,sir?
2 n=1

ar

IN+1" 17
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FIG. 1. Dependence of the instability threshaldon the size of
the one-dimensional latticl, with long-range interactions for dif-
ferent values op.

The instability threshold . for long-range interactions as
a function of the size of the 1D lattid®&l) for different values
of p is plotted in Fig. 1. The curve fop=5 practically
corresponds to the resylt6) for the nearest-neighbor inter-
actions model. The above results show that due to the in-
creased inertia of the system the instability threshold for the
long-range interactions is higher than the corresponding
threshold for the nearest-neighbor interactions.

(c) The two-dimensional Iatticézr(n,m,O) with nearest-
neighbor interactionsThe instability threshold for this case

reads
1 K,—Km Ky +Kkm
cos > cos > .

For highly elongated 2D lattices, with>M, perturbations
dominantly develop along the longer dimension of the lattice
and the instability threshol@9) approaches values for the
instability threshold for 1D lattice&l6).
(d) The two-dimensional lattice=r(n,m,0) with long-

range interactions:

k,n

2

|

N M
—E 2 Jnml cos(knpn) cos(kmm)—l]}. (20
n=1 m=1

2

)\2>k—+2
2

(19

N

> JnosSir
n=1

2

k M K.m
A2>—+2 + > JomSin m—)
2 m=1 ! 2

For the interaction model with a power law dependence on
the distance between the interacting eleme(@s J,

For the interaction model with a power law dependence=1/(n?>+m?)P?, the instability threshold20) becomes

on the distance between interacting elemei@s such as
J,=1/nP, the instability threshold17) reads

|

T
2N+1

nP

|

N

+2>
n=1

2

NZ>—

> (18)

sir? (k,n/2)

nP

sir? (ky,m/2)

mP

|

>

M
+ 2
n=1 m=1

k2
2
N >—2 +2

[ cos(k,n) cos(k,m)—1]
(n2 + m2) p/2

-2 X

n=1 m=1

(21)
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provides a complete basi$ourier spackfor the general
perturbations; this is not a case for discrete models. It basi-
1.5 cally means that in our case the applied energy principle will
< give necessary and sufficient conditions for the stability un-
der the assumed type of discrete perturbati®s
1.01 For our further calculations it is convenient to substitute
Az—z and to express operatoks. in the form
0.57 |:+=)\2(AS++M_5)a
SSNEESEN Lo=A%(S_+u—-1), (22
e 20 where u is the parameter containing information about the
discreteness of the system, defined by
20" ° 4s
M=, (23
FIG. 2. The instability threshold, as a function of the size of A
théwo-dlmensmnal latticeN,M) with long-range interactions for and ASi are Sturm-Liouville-type operators
. 92
_ - _ _ S,=-—; +6tanff(2),
The instability threshold . for long-range interactions as Jz
a function of the size of the 2D latticeN(M) for p=3 is (24)
presented in Fig. 2. The valye=3 corresponds to the case . 92
of isotropic dipole-dipole interactions discussed in Ref. 27 S =-— +2tanff(2).

for two-dimensional DNLS lattice model. The instability 9z

threshold decreases with the size of the lattice and has Bhese operators possess a well-known spéttfae small-
minimum for the square lattichi=M. Increasingp leads to  est eigenvalues® and corresponding eigenfunctiogé®
a decrease ok, and for large values op approaches the in the discrete pért of the spectrum are N
result given by Eq(19) for the nearest-neighbor interactions
model. As seen on inspection, the dispersion term in(Eq. ©)_ 1. 0)_
increases the cw instability threshdldore stablg the effect o=’=1; y==1/coshz),
which vanishes for the long-wavelength perturbation. (25
c0=2; ¢ 9=1/cosk (z).
B. Stability of lit luti . . .
” a .I fy ot array SO_' on soltions ~ The procedure of the energy principle described in Refs.
Stability analysis of AS solutions becomes more compli-28 and 29 demands one to find regions of the parameter
cated due to an explicz dependence of the differential op- \yhere operatoré . are positive definite or indefinite. Since

eratorsL .. . However, the fact that the discrete properties Ofthe Sturm-Liouville operatorét are positive definite and

the system are incorporated into the operatorsonly via  possess only positive eigenvalues, it is straightforward to

the 2 (N, M) term, enables a direct application of the math-finy that the operatok _ is positive definite for™>0, while

ematical methods developed for stability analysis of con-

tinuum models. To calculate the instability threshold and de:[he operatoL . is mdgflnlte for 0<pu<3 and posmve defi-
ite for >3. According to the energy principfé,the suf-

gadlregDspé:eStI\rlaLgfr:Ledgléo;:]tl:ztrz,yv;?ir?ggleerih;elr_:ggkzpfrll)ét icient conditions for the inst?bility are satisfied in the region

Spatsche® and a variational method by Rypdal and 0<x<3, where the operatdr, is indefinite. The system is

Rasmussef, which were originally introduced for stability Stable under the assumed perturbati@sfor ©>3, where

studies of the continuum NLS equation solutions. operatorsL .. are positive definite. These results lead to the
The energy principle is applicable when the linearizednext instability condition

evolution equations with respect to perturbatioh8) can be

written in a standard forrh ~*a,= — L[, a with L ! positive Lo ~2Vy%(N,M) 26
definite. For this case the positive definiteness of the operator ¢ J3 '

I:+ is a necessary and sufficient condition for the Ljapunov

stability of the system. The detailed proof is given in Refs. If we compare the above instability threshold for AS so-
28 and 29. However, for CDNLS, in the derivation of Eqg. lutions with the threshold for CW solutions given by Ef4)
(10) we have assumed perturbatiof® with a simple har- it becomes obvious that fde=0 the difference comes only
monic dependence on the discrete variablesn]. Strictly,  within a numerical factory2/3~0.8165. It means that all
while for continuum models harmonic perturbation ansatzcorresponding explicit results for the instability thresholds
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for AS solutions can be derived from the expressions given . a(z)=-Tb(2),

by Egs. (14)—(21) for the instability thresholds of the cw 27)
solutions; by takingk=0 and just multiplying by a factor ~

0.8165. It also means that the shapes of the curves displayed L_b(z)=T"a(z),

in Figs. 1 and 2 are the same as in the case of AS solutions.

For the 1D lattice with nearest-neighbor interactions, Eqwhere I'=y/\? is the normalized growth rate. The above
(26) readily recovers earlier results obtained in Refs. 5, 9gquations can be derived from the variation of the action
and 13.

The application of the above energy principle to the sta- w
bility of AS solutions proves the existence of exponentially 6S= 5f L(a,a,,b,b,,z)dz (28
growing modes and gives the threshold val@é), without -
providing any further insight. Therefore, in order to calculate o
the growth rate spectral structure of the instability, we applyVhere the Lagrangiad is given by
a variational approach, originally introduced for the con-

tinuum NLS equation in Ref. 29 and first generalized to a 1 u+1 3
continuum-discrete 1D NLS equation with nearest-neighbor L= §(a§+ b§)+ 5 a?
interactions, by these authdrsFor the normal exponentially cosit (z)
growing modesa(t,z) =a(z) exp (y); b(t,z) =b(z) exp (p) 1 1

with the growth ratey, the eigenvalue equatior{d0) after
the substitutionnz— z are transformed into

b2+Tab. (29

2 " costt (2)

(a) N=2 (b) N=8
1.6 1.6
1.4 1.4 p=1
1.2 1.2
_ 1 p=1.5
= 104 P=1 o]
p=1.5 ]
0.8 4 p=: 0.8
p=
0.6 0.6
p= ]
0.4 0.4
0.2 0.2
0.0 T T v T T T T T T T T T 1 0.0
0.0 0.5 1.0 15 20 25 3.0 0.0
A A
(¢) N=20

1.6+
1.4

124

0.8
0.6
0.4

0.2

0.0

0.0

FIG. 3. Dependence of the growth ratEson the soliton amplitude. for three different one-dimensional lattices with long-range
interactionsi(a) N=2, (b) N=8, and(c) N=20.
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(a)
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p=3
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1.0
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(b)

40

35

30

20
N

25 30 35 40

FIG. 4. Growth rated” of the instability of the array soliton
solution with amplitudex =0.5, as a function of the size of the
two-dimensional latticeN,M), with long-range interactions fqu
=3: (a) surfacel'(N,M); (b) corresponding gray scale map of the
projection on theN-M plane.

The basic idea of the variational approach is to define a

set of test functions(z) andb(z) with some variational
parameters and to calculate the action inte§rdtlis obvious

that with this approach, obtained results will critically de-

PHYSICAL REVIEW B 68, 014305 (2003

~ ~ B
a(z)=———, b(2)=——, 31
2) cosit (2) @ cosh(z) 3
we calculate the action integral
S=2a%%—l>—uﬂlkgraﬁ. (32

The following expression for the growth rate structure

(33

is obtained after variation of Eq32), from the conditions
Sl da= S/ 9B=0

The instability threshold ; corresponds to the marginally
stable modd™ =0 in the dispersion relatiof83). The expres-
sion for the threshold calculated from E®3) coincides, as
expected, with the expressig@6) obtained by applying the
energy principle.

The dispersion relatiof33) has the same structure as re-
sults given in Ref. 29 for the continuum NLS equation and in
Ref. 13 for the 1D CDNLS equation with nearest-neighbor
interactions model, because complete discrete properties of
the system are incorporated only via the paramgtewhich
is defined by Eq(23). Replacing the particular expressions
for u into Eq. (33) for lattices with different dimensionality
(one-dimensional or two-dimensionand type of the inter-
actions(nearest-neighbor or long-range interactiong can
readily obtain explicit formulas for the corresponding growth
rate structure.

(@) One-dimensional Iatticea#(n,0,0) with nearest-
neighbor interactions:

n 2 .
2N+1) \/3)\ —4S|r12(

el
7\277\/§

r sin

2N+1
(34)

pend on our choice of the test functions. It was shown and
also numerically confirmed in Refs. 13 and 29 that a good (b) One-dimensional lattice = (n,0,0) with long-range

choice for the test functions are eigenfunctions of Eg3)
for the marginally stable state§ €0).

a(z)=0, b(z)= n=0

cosh(z)’
(30

a(z)= , b(z)=0, wu=3.

cosit (z)

interactions:

8\/5 \/ " ) T
P V& s
\/ N .-
N |
X \/ 3\ 4;;fh$¥(2N+1n> (35)

For the interaction model with a power law dependence

Assuming test functions with two variational parameterson the distance between interacting elemegis J,= 1/n?

a and B in the form

the growth ratg35) reads
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I' on the soliton amplitude, for three different 1D latticés:
N=2, (b) N=8, and(c) N=20. The curves for larg@
= -7 practically correspond to the results for the nearest-neighbor
N NE] n=1 nP interactions model® The growth rate is less sensitive to the
variation ofp for the lattices with lower number of elements

N Sir? ™ n and forN=1 (one-dimensional lattice with three eleménts
) 2N+1 all curves degenerate into a single one which coincides with
. SAT—4 nzl nP : (38)  the growth rate for the nearest-neighbor interactions model.

(c) Two-dimensional Iattice*#(n,m,O) with nearest-
Figures 3a)—(c) show the dependence of the growth rateneighbor interactions:

8.2 ( kn—km) ( Ky + K
I'=— — cos| 7 cos| 7

k,—k
\/3)\2—44—4 Cos<77 o n) cos|
N3 2 2 2

(d) Two-dimensional Iatticé#(n,m,O) with Iong—range interactions:

Knt+Km
5 |-

M

N
I'=— \/2 JnoSir? (k,n/2)+ E JomSi? (kym/2)— >, >, Iyl cos(kan) cos(kym)—1]
A 71'\/— n=1 n=1 m=1 '

M N M
><\/3>\2 {E JnoSir? (k,n/2)+ Z Jom Sir? (Kpm/2) — Z ElJn,m[cos(knn)cos(kmm)—l]J. (38)

For the interaction model with a power law dependence on the distandg ,,= 1/(n?+ m?)P2, the growth raté38) reads

N M

812 NCosilt(kon/2) M sir? (kmi2) cos(kyn) cos(k,m)—1
2 [ s kani2) 5, S kamz)

N2my3 VA=t nP mP n=1 m=1 (n2-+m?2)P12

N M .
X\/3)\2 2 2 S|n2(kmm/2)_

m=1 mP n=1m

sir? (k, n/2)
nP

cos(k,n) cos(k,m)—1
1 (n?+m?)P2

(39

In Figs. 4a) and 4b) we show the growth rat€ for the lattice with a long-range isotropic coupling between lattice
instability of the array soliton with the amplitude=0.5as a elements. Explicit formulas for the long-range isotropic in-
function of the size of the two-dimensional lattichl,(M)  teractions with a power law dependence on the distance be-
with long-range interactions fqu= 3. Figure 4a) represents tween interacting eleme_nts are also derived. Our results for
the surfacel'(N,M), while Fig. 4b) is the corresponding highly elongated 2D lattices with largerecover the expres-
gray scale map of the projection on the-M plane. The Sion for the one-dimensional lattice with nearest-neighbor

black area in Fig. @) is the region below the instability Intéractions, obtained in earlier papérs’ > This study
threshold. seems to be the first attempt to address the stationary solu-

tion stability in 2D lattices within the CDNLS model with
dispersion and long-range interactions. Therefore, our find-
I\V. CONCLUSION ings can be particularly relevant to different physical systems
modelled by 2D DNLS and CDNLS lattices models with
In this work, we have analytically studied detailed stabil-long-range interactions, e.g., nonlinear optical fiber
ity properties of the continuous wave and array soliton staarrays'™*> DNA molecule chain$® molecular crystal
tionary solutions in the framework of the general model ofexcitation®? and vibron transport in biopolimers etc.
two-dimensional nonlinear lattices with dispersion and long- The results presented in our study are based on the linear
range interactions, described by the 2D CDNLS equationstability analysis and indicate a presence of small exponen-
The linear stability of the array soliton solution is solved by tially growing modes in the system, giving no predictions on
applying the energy principle and the variational methodthe subsequent nonlinear evolution stage. Based on the re-
which were originally developed for the continuum NLS sults for 1D and 2D CDNLS lattice models with nearest-
equatior’®?°We have found above solutions to be unstableneighbor interactiorfs*'% and for 2D DNLS lattice models
and have calculated explicit expressions for the instabilitywithout dispersiopwith long-range interaction®; 2>%’it is
thresholds and growth rate spectra valid for the 2D CDNLSplausible to expect a nonlinear development of the quasicol-
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