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Abstract

The dynamics of localized modes in discrete media with saturable nonlinearity are investigated. The stability of stationary bright solitons is
discussed from the view point of the energy minimum principle and mapping analysis. Due to the cascade saturation mechanism, a bifurcation
from trapped to transversely moving localized mode is found for particular values of high power. The bifurcation coincides with the existence of
the (almost) perfect separatrix in the corresponding area-preserving map. In addition, the definition of the Peierls–Nabarro effective potential is
reconsidered.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In most cases of interest, the physical system corresponds
to coupled sets of linear or nonlinear oscillators distributed
in space, i.e. to the nonlinear lattice [1–3]. However, when a
system length scale is much higher than the distance between
the oscillators, continuous approximation is applicable. The
physical system can then be mathematically modelled by
nonlinear partial differential equations. If the system is
integrable (possesses an infinite number of invariants) localized
solutions of soliton type are possible. Moreover, the soliton-
like solutions can also be found in nonintegrable continuous
systems with a finite number of invariants. For example,
localized solutions such as solitary waves, breathers, etc are
detected experimentally and numerically in hydrodynamics,
condensed matter physics, and biophysics [4].

In the opposite limit, characterized by a length scale
comparable to the distance between the oscillators, the physical
system should be modelled by a set of difference-differential
equations. The interplay between nonlinearity and discreteness
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conspire to produce localized modes as discrete solitons,
discrete breathers [5], etc. These modes arise naturally in the
context of energy localization in discrete condensed matter and
biological systems as well as in optical devices [3,6–8].

Generally, in discrete systems both continuous translation
symmetry and integrability are broken. As a consequence, the
localized solution is pinned in the lattice and free transverse
steering of the localized modes cannot be sustained. The so-
called pinned energy is related to the Peierls–Nabarro (PN)
barrier [9–11]. Although the physical sense of the PN barrier is
clear, there is no unique interpretation of its value [9,12]. This
point will also be commented on in the present paper.

The stability of the localized modes in nonlinear lattices
is considered from two aspects: the energy minimum principle
and mapping orbit stability [13,14]. It is shown that physical
systems described by the integrable discrete equation, such
as the Ablowitz–Ladik (AL) equation, possess discrete soliton
solutions that are manifested in the integrable map as perfect
separatrices with coinciding stable and unstable manifolds [10,
15–17]. On the other hand, in the nonintegrable system
(modelled by equations of the discrete nonlinear Schrödinger,
DNLS, type) a separatrix is not perfect, in the sense that the
stable and unstable manifolds no longer coincide but rather
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intersect each other transversely in homoclinic points, creating
complex chaotic dynamics that eventually develop Smale
horseshoes. The change between the perfect and imperfect map
separatrix with a change of the parameter values is interpreted
as an increasing value of the PN barrier from the zero
level [15]. This is closely related to the possibility for transverse
steering of the localized modes in discrete nonlinear lattices.
Free steering is allowed in integrable systems [13,18,19] and
in nonintegrable systems with weakly destroyed translational
symmetry. But the mobility of the strongly localized modes is
still an open question.

Here, the dynamics of localized modes in discrete
media with saturable nonlinearity, such as waveguide arrays
in photorefractive strontium barium niobate crystals, are
investigated. The physics of localized modes in photorefractive
media is based on the electro-optic effect. Self-trapping usually
requires a DC electric field [20]. Briefly, the illumination of
the photorefractive crystal initiates charge generation, and thus
the formation of an internal space electric field. The electric
field changes the refractive index via the electro-optic effect
and generates charge drift in the opposite direction with respect
to the charge diffusion, until equilibrium is established. The
charge drift also can be forced by an external electric field.
The net effect leads to the saturable nature of the underlying
nonlinearities.

In previous publications, investigations of localized modes
in photorefractive media started with the study of the existence
and stability of discrete solitons [21,22]. The saturable
nonlinearity strongly affects soliton stability properties and
its propagation across the lattice. It is revealed that the
behaviour of localized modes in photorefractive media differs
considerably from those of discrete lattices with cubic
(Kerr) nonlinearity [12,23]. A deeper understanding of these
differences is now a crucial topic. The present paper is
organized in the following manner. A brief description of
the model and previously obtained results concerning the
existence of the localized modes in photorefractive media with
saturable nonlinearity are given in Section 2. In addition, in
Section 2.1 the applied numerical methods and the definition
of the Liapunov exponent are presented. In Section 3, the
stability of the localized modes with respect to longitudinal
and transversal perturbations is considered, adopting the
dynamical and mapping stability analysis. The most significant
phenomenon is bifurcation from the trapped to the moving
state, which is discussed in detail in Section 4. The conclusions
are summarized in the last part.

2. Establishment of the model

The one-dimensional DNLS lattice model with saturable
nonlinearity, which represents a discrete version of the
Vinetskii–Kukhtarev equation [24], is investigated:

i
∂Un

∂t
+ (Un+1 + Un−1 − 2Un) − γ

Un

1 + |Un|
2 = 0. (1)

Here, Un is the wave function in the n-th lattice element (n =

1, . . . , N ) with (UN+1 = U1) for the case of periodic boundary
conditions, and γ is the nonlinearity parameter [22].
The above equation represents a system of linearly
coupled nonlinear difference-differential equations that are not
integrable but possess two conserved quantities: Hamiltonian
H =

∑
n[γ ln(1 + |Un|

2) + |Un−1 − Un|
2
] and power P =∑

n|Un|
2.

Discrete stationary localized modes of the bright soliton type
can be obtained from Eq. (1), assuming the solution in a form
Un(z) = φne−iωt and obtaining a set of coupled algebraic
equations for the real function φn [22]

ωφn + (φn+1 + φn−1 − 2φn) −
γφn

1 + |φn|
2 = 0, (2)

where ω is the propagation parameter. From Eq. (2), different
types of localized modes can be obtained. Here, two types
of localized bright solitons are investigated: on-site solitons
centered at the lattice site n = 0,1 and inter-site solitons
centered between two neighboring lattice elements n = ±1
(modes A and B in paper [22], respectively). The existence of
the localized modes is investigated in paper [22]. It is shown
that the bright solitons exist in the parameter region ω ≤ γ .

2.1. Numerical model

Optical pulse propagation in the nonlinear lattice (1) is
solved numerically using the 6th order Runge–Kutta procedure.
The following parameter set is chosen2: γ = 2, 3.05, 6.1, 9.1,
12.1 and 25.

The mapping stability analysis in Section 3.2, i.e. the
stability of the fixed points of the corresponding 2D map, is
performed by an iterative procedure. Map dynamics is followed
in the corresponding phase space for M = 1000 mapping
trajectories randomly initialized in the neighborhood of the
fixed point.

In addition, the effective Liapunov exponent (LE) as a
measure of the increasing map stochasticity is calculated using
the procedure developed in the literature [25]. The Liapunov
exponent of the j th trajectory is defined as [25]:

l j (t) ≡
1
t

ln
(

d j (t)

d j (t = 0)

)
, (3)

where d j (t) is the distance at time t = jdt between
two initially neighboring trajectories, usually evaluated in the
tangential space of the trajectory [26]. The positive value of
the LE, l j > 0, denotes exponential separation of two initially
neighboring trajectories. On the other hand, l j ≤ 0 corresponds
to initially neighboring trajectories stuck to each other. The
effective LE is defined as the averaged LE over different initial
conditions (index j):

L(t) ≡ 〈l j (t)〉 =
1
M

M∑
j=1

l j (t). (4)

1 The numeration n = . . . , −2, −1, 0, 1, 2, . . . for on-site and n =

. . . , −2, −1, 1, 2, . . . for inter-site localized modes is taken from Ref. [22].
2 This set belongs to the corresponding experimental range of physical

parameters: the electric field, E = (0–10) kV/cm, the wavelength of the
laser light, λ = (480–520) nm, and the distance between two adjacent lattice
elements of the order of several µm.
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Fig. 1. The energy difference, 1E , i.e. the value of the Peierls–Nabarro
effective potential barrier, 1EP N (Section 3.1), vs the total power P for
γ = 9.1. The straight lines on the graph denote the powers that correspond
to the potentially moving localized modes.

3. Stability of localized modes

First of all, the (dynamical) stability of the physical solutions
and the stability of the corresponding map orbit (linear
mapping) have to be distinguished [9,10,18]. A dynamically
stable solution minimizing the action (energy) corresponds
to a linearly unstable map orbit, whereas physically unstable
solutions corresponding to the maximum energy configuration
are reflected in the map dynamics as linearly stable map orbits.

3.1. Dynamical stability analysis

In the case of coexisting stationary modes with fixed power,
according to the energy minimum criterion, the stable mode
is the mode with the minimum energy.3 Here, observing the
energy difference between the two coexisting modes with the
same power, the on-site and inter-site bright solitons,

1E = Hon(P) − Hinter(P), (5)

the stable on-site (inter-site) mode corresponds to the negative
(positive) value of 1E (Fig. 1). The shape of the 1E vs P
curve, which is characterized by several zeros, is determined
by the effect of the saturable nonlinearity [22]. Accordingly,
in the range of small γ , where saturable nonlinearity cannot
significantly affect the system behaviour, vanishing values
of the 1E for all P are observed. The stability of the
localized mode is checked numerically by adding small in-
phase perturbation to the unperturbed stationary bright soliton.
Unstable on-site and inter-site localized modes propagate as
stable inter-site and on-site localized breathers with the same
power, respectively [22]. The regions with 1E ≈ 0 are
characterized by the marginal stability of both mentioned
modes.

From the view point of the localized mode transverse
mobility, the energy difference is associated with the
Peierls–Nabarro effective potential, which originates from the

3 Note that the stability criterion is the energy maximum principle in the
self-defocusing media [16] instead of the energy minimum principle in the self-
focusing media.
dynamical studies of the kink solutions [9,12], 1E = 1EPN .
The amplitude of the PN potential is considered to be equal
to the minimum barrier that must be overcome to translate the
center of mass of the system by half a lattice period. Note that,
in this context, the on-site and inter-site localized modes of
the same power are treated as two dynamical realizations of
the one moving mode. However, the above definition deserves
caution in the case of a moving breather, which inherently has
the internal structure, as is shown in the following.

The transverse propagation of the localized modes
is numerically initiated by adding the small transverse
perturbation as a phase shift of the form exp(ikn), where
parameter k is the initial transverse mode velocity. Perturbation
can initiate translational movement of dynamically unstable
(according to the minimum energy criterion) on-site or inter-
site modes of the fixed power.

The shape of the observed PN potential (bounded potential
with multiple zeros Fig. 1) is related to the cascade amplitude
saturation; Figs. 2 and 3 [22]. Precisely, increasing P does not
lead to continuous energy localization into the single lattice
element and decoupling from the rest of the lattice, as in
the case of the DNLS with cubic nonlinearity. The cascade
saturation suppresses the energy localization resulting in the
existence of less localized modes as P increases (Fig. 2).

Finally, the shape of the PN potential influences the power
dependent steering of the localized mode across the lattice. The
fact that the amplitude of the PN potential barrier is bounded
has brought the general conclusion that the ability of the large
power solitons to move across the lattice is considerably higher
than in the case of DNLS lattices with cubic nonlinearity. The
significant point is that the on-site and inter-site stationary
solitons, without internal oscillations but with different self-
frequencies for the fixed power P , propagate transversely as
the corresponding breathers characterized by the self-frequency
between ωon and ωinter.4

The most intriguing open question is the interpretation of
free steering of localized modes with high power (the effect is
absent in the DNLS lattice with cubic nonlinearity); Fig. 4(d).
In addition, rigidity of the localized modes around the zeros of
the PN potential in the high power region, Fig. 1, influences the
reconsideration of the PN potential given by Eq. (3).

An interesting view on the transition (bifurcation) trapped-
moving localized mode can be obtained in the space
(ω, γ, P(H)); Fig. 5. The P(ω) and H(ω) curves for both on-
site and inter-site modes are monotonically decreasing with ω

and are concave except in the ‘turning’ points ω = 0.675, 2
for the on-site mode and 1.05 for the inter-site mode, which are
correlated with the nature of the saturable nonlinearity; Fig. 6.
Only the localized modes with high power for these parameter
values can bifurcate to the corresponding moving localized
breathers; Fig. 4(d), (e). Note that the particular regions are
not analytically reachable (the regions of high power [22]). The
dynamics in the turning point is associated with the cascade

4 Note that, except for the breather with a single self-frequency, the quasi-
periodic and chaotic breathers can be realized.
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Fig. 2. Amplitude versus total power. Increasing the parameter γ (ω ≤ γ for fixed γ ), the cascade saturation mechanism significantly affects the dynamics of
localized modes. In the case with γ = 2, transversely kicked localized modes of all powers freely move across the lattice. On the other hand, for γ = 9.1, mobility
is observed only for modes with γ ≈ ω (P � 1) and ω = 0.675, 1.05, 2 (P � 1), which are indicated by the dashed lines on the graph.
Fig. 3. Amplitude versus the propagation parameter for on-site and inter-site localized modes. The dashed lines indicate the critical values of the parameter ω:
0.675, 2 for the on-site mode (a) and 1.05 for the inter-site mode (b). Only the modes for critical ω can be moved across the lattice.
nature of amplitude saturation, as the comparison of Fig. 6 with
Fig. 2 (the curves amplitude vs P) illustrates.

3.2. Mapping stability

It is convenient to cast the real-valued second order
difference Eq. (2) into a two-dimensional map R2

→ R2 by
defining xn = φn and yn = φn−1, where the lattice index plays
the role of discrete ‘time’. The corresponding map M can be
given as:

xn+1 =

(
2 − ω +

γ

1 + x2
n

)
xn − yn

yn+1 = xn . (6)

Reversibility of the map M is established by factorization M =

M0M1 with M0

x = y

y = x, (7)

and with M1

x = x

y =

(
2 − ω +

γ

1 + x2
n

)
x − y, (8)

where M0, M1 are involutions and their corresponding
symmetry lines are given by S0: x = y and S1: −[2 − ω +
γ /(1+x2)]x/2. The map M is an analytic area-preserving twist
map [13].

To investigate the stability of stationary localized solutions
in the form of bright solitons, the study of the fixed points
(period-1 orbits) of the map M, Eq. (6), is sufficient. The fixed
points, for which x = y, are located at:

x0 = 0, x1,2 = ±

√
γ − ω

ω
. (9)

The last two fixed points exist only if sgn(γ − ω) = sgn(ω),
i.e. if γ ≥ ω, ω > 0 or γ ≤ ω, ω < 0. Here, the first case is
simulated. The stability of the fixed points is governed by their
values for the corresponding residues [13]:

ρ =
1
4

(2 − Tr(DM)) , (10)

where the tangent map DM is determined by:

DM =

[
ωn −1
1 0

]
(11)

with

ωn = 2 − ω + γ
1 − x2

n

(1 + x2
n)

2 . (12)

The value of residue at fixed point x0 = 0 is

ρ =
1
4
(ω − γ ), (13)
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Fig. 4. The bifurcation trapped-moving localized mode (breather). The 2D plots of the transversely kicked localized mode and the corresponding map orbits around
the fixed point (0, 0) are shown on the left and right, respectively. The moving localized mode exists for ω ≈ γ (a,f) and ω = 2 independently on γ (d,i). Transient
mobility is observed for ω = 1.05 and k = 0.1 (e,j). Initially, the on-site mode is centered at n = 51 and the inter-site mode between n = 51 and n = 52.
and at fixed points x1,2 it is

ρ =
ω

2γ
(γ − ω). (14)

For the actual sets of parameters where 0 < ω ≤ γ , at
x0 the residue passes through zero, i.e. ρ ≤ 0, and hence
the origin losses stability. The calculation of normal forms
shows that at ω ≈ γ the origin is turned into an unstable
hyperbolic point caused by a tangent (saddle-node) bifurcation;
Fig. 7(a). The hyperbolic point is connected to itself by
a homoclinic orbit created by the (invariant) unstable and
stable manifold. The nonlinear stability analysis proved that
the homoclinic orbit is manifested on the lattice chain as a
soliton-like solution [9]. There exist two homoclinic orbits: the
homoclinic orbit crossing S0, which corresponds to the inter-
site mode (Fig. 4(f)), and the homoclinic orbit with three large
amplitudes, which corresponds to the on-site mode (Fig. 4(j)).

The pair of fixed points x1,2 on the symmetry line S0 form
stable elliptic fixed points according to the value of the residue
0 < ρ < 1 for the actual parameter region; Fig. 7(b).

Generally, stable stationary localized solutions are related
to homoclinic and heteroclinic orbits of the corresponding
map, even though there exist neighboring map orbits that are
strongly chaotic. The reason is that the localized states rely
on the structural stability of orbits homoclinic or heteroclinic
to unstable hyperbolic fixed points. With the exception of the
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Fig. 5. The total power of on-site localized modes as a function of parameter
ω for different γ in log–log proportions. The moving localized modes are
observed for the critical values of parameter ω, i.e. at turning points (straight
lines), and in the shadowed region of the plot.

P values around turning points, the increasing stochasticity
with increasing P , i.e. with a decreasing value of ω from
the bifurcating value, ω ≈ γ , is clearly seen by plotting
the map orbits initialized near the corresponding fixed point;
Figs. 4(g), (h). This is quantified by calculating the effective
LE [27] (Section 2.1). A two dimensional area-preserving map
is characterized by two one-dimensional LE, L1 = −L2, or
by a zeroth two-dimensional LE [25]. Here, the non-negative
1D LE is followed. The effective LE as a function of the
total power P is plotted in Fig. 8. As can be seen, homoclinic
orbits that correspond to perfect separatrices are characterized
with L → 0. In the presence of imperfect separatrices,
L slowly decreases, saturating to small finite positive value.
Finally, highly stochastic map orbits are characterized by the
fast saturation of the L to the significant finite positive value.

The existence of the moving localized modes coincides with
the appearance of the nearly perfect mapping separatrices, as
noted above. In all other parameter regions, the localized mode
(breather) is trapped between two adjacent lattice elements.

4. Bifurcation trapped-moving localized mode: Discussion

The existence of moving soliton-like modes and breathers
as mathematically exact solutions is still an open question [15,
19]. Here, an attempt is made to qualify the genesis of the
moving modes in discrete photorefractive media with saturable
nonlinearity.

In order to better understand the unusual dynamical be-
haviour of localized mode, which is reported in reference [22],
the stationary Eq. (2) is multiplied by the term 1+φ2

n and rewrit-
ten as:

(ω − 2 − γ )φn + (φn+1 + φn−1)(1 + φ2
n)

+ (ω − 2)φ3
n = 0. (15)

This coincides with the stationary generalized discrete
nonlinear Schrödinger (GDNLS) equation in reference [13]
(V = 1, µ = 1).
Fig. 6. The total power and Hamiltonian as functions of the parameter ω for γ = 9.1. The dashed lines denote the parameter values at which the transverse moving
localized mode exists.
Fig. 7. The bifurcation diagram in parameter space (γ, ω). The existence region of the stationary bright solitons, ω ≤ γ , and the region where the moving localized
mode can be excited are shadowed. Parts (a) and (b) illustrate the behaviour near the fixed points x0 and x1,2, respectively.
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Fig. 8. Effective Liapunov exponent for γ = 9.1 and different P . Values
P = 0.14, 1.82, 10.92, 21.63 and 63.03 correspond to ω = 9, 5, 2.5, 2 and
1.05, respectively. Index m notes the number of steps in numerical simulation.

At the value of the propagation parameter, ω = 2, the
stationary version of the discrete, integrable AL equation [13] is
obtained from Eq. (15). The corresponding map orbits around
the origin are perfect separatrices. In the near neighborhood
of ω = 2, the last term in (15) can be considered as a small
perturbation of the stationary AL equation. The perturbed map
orbits around the origin are imperfect separatrices, i.e. the
stable and unstable manifolds of the fixed point at the origin
transversely intersect each other. The Melnikov analysis, as
in Ref. [13], shows that the distance between two adjacent
transverse intersections of the stable and unstable manifolds of
the (0, 0) fixed point depends on the value of ω − 2 − γ :

∆ ≈ ln

−
ω − 2 − γ

2
+

√
(ω − 2 − γ )2

4
− 1

 . (16)

The perfect separatrix corresponds to ω(≈2) = γ , i.e. to the
bifurcation at the fixed point (0, 0) (Section 3.2). Numerical
calculations in the parameter range 0 < ω ≤ γ < 3 (Fig. 5)
show that the localized modes of all powers can be moved
across the lattice. Thus, the mobility can be related to the
existence of the perfect or transversely intersecting separatrices
of the corresponding mappings [9] when the stochasticity is
not yet significantly developed. This is concluded from the
vanishing of the Liapunov exponents.

Increasing the value of γ (ω ≤ γ , according to the existence
condition), the mobility is sustained in two cases; Figs. 5 and
7. The first corresponds to the localized modes with low power,
P < 1 and ω ≈ γ . This is the neighborhood of the first zero
of the 1EPN ; Fig. 1. The second is related to the localized
modes with high power, P � 1, at turning points of the curve
P vs ω; Figs. 5 and 6. There, the corresponding map orbits
are nearly perfect separatrices (Section 3.2) and the EPN 6= 0
(Fig. 1). Thus, the nonintegrability of the map and the resulting
transverse intersection of the stable and unstable manifolds at
an unstable fixed point means that the localized solutions cannot
be translated over the lattice from one point to an adjacent point
without overcoming an energy barrier. This energy barrier is
associated with the PN potential barrier. Now, the minimum of
the PN barrier (zeroth value) is in the parameter range where
the map orbit is a perfect separatrix.
Let us summarize basic facts about map orbit’s behaviour
near the separatrices in the context of the moving localized
modes.

• Region of small power
In the region of small power, P � 1, model equations

(1) are nicely approximated by the discrete nonlinear
Schrödinger equations with cubic nonlinearity [12,23]. The
solitons are characterized here by large width (tens of
lattice elements). Roughly, the coarse grained continuity
of the lattice system is established. Thus, in spite of the
nonintegrability and broken translational symmetry (due
to discreteness) the stationary discrete localized modes
(soliton-like solutions) can be steered transversely through
the lattice (Fig. 4(a)). The steering efficiency is a function of
both P and k.

From the view point of the mappings, the invariant map
orbits are nearly perfect separatrices; Fig. 4(f). A small
perturbation is a seed for overcoming the separatrix and for
generating the transverse movement [22]. Steering efficiency
can be controlled through the value of k (the steering
velocity). In addition, the effective LE saturates to nearly the
zeroth value; Fig. 8.

• Intermediate and high powers: The critical points
The most significant property of the saturable nonlinear-

ity in the present model is the cascade nature of saturation;
Figs. 2 and 3. Generally, as written in Section 3, when the in-
crease of the amplitude in the central element stops (i.e. the
amplitude locally saturates) the power increase is maintained
by the increase of the amplitude in the first several neigh-
boring elements. At the corresponding parameter values,
the power and energy curves possess turning points; Fig. 6.
Locally, this parameter range is characterized by marginal
mode stability and the new quality in the soliton dynamics is
proclaimed.

It is worth stressing once more that the critical (turning)
points correspond to ω = 0.675, 1.05 and 2 independently
of γ . Above the threshold value of k, the trapping-moving
exchange starts. However, free moving breathers are found
for some value of k and ω = 2, due to the recovered
integrability of the system which is described by the AL
type Eq. (15). Then, the perfect separatrix appears in the
corresponding phase diagram5; Fig. 4(h).

At the points ω = 0.675, 1.05, the corresponding
phase diagrams are characterized by the net of separatrices,
i.e. interrelated stochasticity regions, as illustrated in
Fig. 4(j). Stochasticity layers of finite width are associated
with the transient mobility for some values of parameter k.
A deeper understanding of the dynamics at these points is
deserving of additional analysis.

• Intermediate and high powers: Far from the critical points
The leading role in the power increase is played by the

amplitude in the central lattice element (element index n =

5 In Refs. [9,10], the presence of separatrices is associated with
phenomenological recovery of the translational symmetry in the discrete
system.
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0, or |n| = 1 for on-site or inter-site stationary solitons,
respectively (Section 2)). The power and energy curves are
concave, and monotonically decreasing with the increasing
parameter ω; Figs. 5 and 6.

For all P in this region independently of the values of
ω, k, the localized mode (breather) is trapped on the lattice
element. The corresponding map orbits around the unstable
fixed point (at the origin) are highly stochastic, or develop
complex stochastic nets for modes with high power far
from or near to the critical points, i.e. the turning points,
respectively (Fig. 4(g), (h)). This is indicated by the finite
non-negative value of the effective LE; Fig. 8. From the view
point of the modified PN potential, its value is now finite and
modes are pinned by the lattice elements.

5. Conclusions

In the present paper, the dynamics of bright localized modes
in discrete media with saturable nonlinearity are investigated
numerically. The stability properties of these modes are
considered from the view point of both the dynamical stability
and the corresponding map orbit stability. The main result is
an improved understanding of the bifurcation from trapped
to moving localized modes of high power. This bifurcation
is generically related to the cascade mechanism of saturation
and, as such, does not exist in the discrete media with cubic
nonlinearity.

It is shown that the bifurcation from trapped to moving
localized modes of high power does not occur at the zeroes of
the effective Peierls–Nabarro potential barrier, defined as the
energy difference between the on-site and inter-site localized
modes of the same power. Rather, the bifurcation appears for
the specific values of parameters where the corresponding map
orbit is an (almost) perfect separatrix. An intriguing future task
will be to study the interactions of strongly localized modes
within the approaches developed here.
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(2004) 033901.
[23] K. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg,

Phys. Rev. Lett. 83 (1999) 2726.
[24] V.O. Vinetskii, N.V. Kukhtarev, Sov. Phys. Solid State 16 (1975) 2414.
[25] A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics,

Springer-Verlag, New York, 1992.
[26] G. Benettin, L. Galgani, J-H. Strelcyn, Phys. Rev. A 14 (1976) 2338.
[27] A. Maluckov, N. Nakajima, M. Okamoto, S. Murakami, R. Kanno,

Physica A 322 (2003) 13.


	Bifurcation analysis of the localized modes dynamics in lattices with saturable nonlinearity
	Introduction
	Establishment of the model
	Numerical model

	Stability of localized modes
	Dynamical stability analysis
	Mapping stability

	Bifurcation trapped-moving localized mode: Discussion
	Conclusions
	Acknowledgements
	References


