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Abstract: The problems of the existence, stability, and transversal
motion of the discrete dark localized modes in the lattices with saturable
nonlinearity are investigated analytically and numerically. The stability
analysis shows existence of regions of the parametric space with eigenvalue
spectrum branches with non-zeroth real part, which indicates possibility for
the propagation of stable on-site and inter-site dark localized modes. The
analysis based on the conserved system quantities reveals the existence of
regions with a vanishing Peierls-Nabarro barrier which allows transverse
motion of the dark breathers. Propagation of the stable on-site and inter-site
dark breathers and their free transversal motion are observed numerically.
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1. Introduction

In the past two decades the investigation of discrete nonlinear lattices with continuous evolution
variable and discrete spatial variables has exhibited a tremendous growth. It was stimulated and
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triggered by the recent progress in the fabrication of nonlinear optical periodic media which
allowed the experimental observation of nonlinear effects and led to the discovery of many new
fundamental nonlinear/discrete phenomena [1, 2]. However, these phenomena are universal and
relevant for many non-optical systems, as localized voltage drops in ladders of the Josephson
junctions [3], localized modes in the antiferromagnetic crystals [4], or localization of matter
waves in the Bose - Einstein condensates using optically-induced periodic potentials [5]. A
special attention is devoted to the discrete intrinsic localized modes like discrete solitons and
breathers which are candidates for guiding, steering, and switching of light beams in the non-
linear optical lattices. The most studies are about bright localized structures in the lattices with
different type of nonlinearity [1]. However, during the last several years the interest in the dark
localized structures has been increased and many papers are published mainly considering the
lattices with Kerr nonlinearity [6, 7]. Very recently, dark solitons were experimentally observed
in the defocusing lithium niobate waveguide arrays with saturable nonlinearity [8]. The authors
demonstrated stable propagation of the dark inter-site mode. These results were discussed in [9]
with a conclusion that the dark inter-site modes are unstable but with a weak instability growth
rate which explains their experimental observation. The aim of this paper is to present a detail
analytical and numerical study of the problems of existence, stability, and transverse motion
of the dark localized modes which will give a better insight in this phenomena. We present
analysis of the dark soliton existence and linear stability and investigate the transverse motion
of the dark localized modes adopting the concept of the Peierls-Nabarro potential. All results
are verified numerically and commented with the respect to the recent results [8, 9].

2. Stability analysis

We start our study with the one-dimensional discrete nonlinear Schrödinger (DNLS) lattice
model with saturable nonlinearity given by [10, 11]

i
∂Un

∂ t
+Un+1 +Un−1 −2Un + γ

Un

1+ |Un|2 = 0, (1)

where Un is the normalized wave function in the n-th lattice element (n = 1,2...) and γ
is the nonlinearity parameter. For γ > 0 the nonlinearity is defocusing (DF). Under the
transformation Un(t) = exp(iπn)exp(−4it)V ∗

n (t) the equation (1) is mapped into the same
DNLS equation for Vn where γ < 0 corresponds to the self-focusing (SF) nonlinearity. The
Eq. (1) represents a system of linearly coupled nonlinear difference-differential equations
which are not integrable in general case but posses two conserved quantities, Hamiltonian
H = ∑n [−γ ln(1+ |Un|2)+ |Un−1−Un|2] and norm (power) P = ∑n |Un|2.

The model equation supports localized solutions of various types [1, 2]. The bright unstag-
gered localized modes (solitons, breathers) can exist in systems with SF nonlinearity and the
bright staggered modes in systems with DF nonlinearity. Here, we study the problem of the
existence and stability of the dark localized modes in a form of localized dips (holes) on the
lattice background with a phase shift across the localizing region [2]. Because the results for
dark localized modes in systems with DF and SF nonlinearities are qualitatively the same, only
the results for DF case [8] are presented for the sake of simplicity.

The starting point is the analysis of the continuous wave (CW) solutions of Eq. (1) which
represent actual background of the dark localized modes. Generally, the assumption U n(t) =
φneiωt , where ω is the propagation parameter, leads to the steady state version of Eq. (1)

−ωφn + φn+1 + φn−1 −2φn + γφn/(1+ φ 2
n ) = 0. (2)

For the CW solution the envelope φn is independent on n and we can assume φn =Uc. With this
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assumption we obtain the following solution

U2
c = (γ −ω)/ω . (3)

To consider the linear stability of the stationary modes [1, 7] we introduce small complex
perturbations εn to the wave envelopes in a form Un(t) = (φn + εn(t))eiωt . After short and
simple algebraic procedure the linearized equation for the small perturbations (ε n << φn) is
obtained

i
∂εn

∂ t
− (ω + 2)εn + εn+1 + εn−1 +

γ
(1+ φ 2

n )2

(
εn −φ2

n ε∗n
)

= 0. (4)

By splitting εn into the real and imaginary part εn = fn + ign, the evolution of the perturbation
is described by the the system of two equations for the real functions. The system written in a
matrix form reads

d
dt

[
fn
gn

]
=

[
0 H+

−H− 0

][
fn
gn

]
≡ M

[
fn
gn

]
, (5)

where the matrix M, which is generally non-hermitian [7], for the lattice with N elements has
dimension 2N×2N. The submatrices H± (N ×N) can be written in the explicit form

H+
i j = (ω + 2)δi j − δi, j+1− δi, j−1− γ

1+ φ 2
n

δi j, H−
i j = H+

i j + 2γ
φ2

n

(1+ φ 2
n )2 δi j, (6)

where δi j is the Kroneker symbol.
For the CW solution, assuming perturbations in a form ( f n,gn) = ( f ,g)eΩt eiKpn cos(qn),

where Kp = π for staggered, Kp = 0 for unstaggered perturbations and q is the wave number,
the following general dispersion relation is obtained

Ω2 = −4
[
γ(1+ cosKp cosq+ ω)−ω2]/γ. (7)

In general, analyzing the condition for the modulation instability (Ω 2 > 0) for different CW
solutions of the DNLS equation (1) [one of them is written in (3)] we can conclude: a) For DF
nonlinearity the CW staggered solutions are unstable which gives a possibility for creation of
the staggered bright solitons, while the CW unstaggered solutions are stable which provides
a stable background for creation of the unstaggered dark solitons; b) For SF nonlinearity the
CW unstaggered solutions are unstable which gives a possibility for creation of the unstaggered
bright solitons, while the CW staggered solutions are stable which provides a stable background
for creation of the staggered dark solitons.

3. Dark modes

For the unstaggered dark solitons two different configurations can exist: the on-site, with a gap
centered on the lattice element and inter-site, with a gap centered between two neighboring
lattice elements. Schematically the patterns for two types of dark solitons can be represented
as: (...1,1,1,0,−1,−1,−1...) - on-site and (...1,1,1,−1,−1,−1...) - inter-site. The linear sta-
bility analysis for dark soliton solutions is based on the properties of the eigenvalues of the
corresponding matrix M. The eigenvalue (EV) spectrum has contributions from two sources.
One is a continuous part of EV spectrum which arises from the background. The corresponding
EV functions are plane waves. For the CW the dispersion relation (7) gives pure imaginary
eigenvalues (Ω2 < 0) and consequently does not indicate instability of dark solitons. The sec-
ond source is associated with the central part of the dark soliton configuration and represents the
discrete part of the EV spectrum. The discrete EV spectrum by itself and through the interaction
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with the continuous part of the EV spectrum can be associated with the eventual instability of
the dark solitons. For this reason we will focus our study to the discrete spectrum.

The first estimates of the discrete spectrum can be done using approximate dark soliton
solutions described simply as a corresponding CW solution with a phase inversion at the n c

element. These solutions can be obtained by multiplying the unstaggered patterns with the
amplitudes of the corresponding CW solution (3). The approximation holds in the limit of large
amplitudes which corresponds to the values of ω near the left boundary of the existence domain.
Substitution of the approximate dark soliton solutions into the Eq. (5) allows calculation of the
discrete eigenvalues

Ωuo = ±i
√

(γ −ω −2)2 + 2, Ωui = ±i
√

2(1+ ω −ω2/γ), (8)

where Ωuo and Ωui are discrete eigenvalues of the on-site and inter-site unstaggered configura-
tions, respectively. These expressions show that the discrete eigenvalues are pure imaginary in
the region of the dark soliton existence (0 < ω < γ) and does not give indication of the soliton
instability. However, it is not a proof of the soliton stability because the eigenvalues with finite
real part may appear with the introduction of the exact soliton solutions in calculations.

The full spectrum of 2N complex eigenvalues of M is found numerically for a different
number of lattice elements N and different values of the parameters γ and ω . Generally, for both
on-site and inter-site configurations we can observe a subset with pure imaginary eigenvalues
embedded in the continuous part of the EV spectrum (Fig. 1; the shaded regions), which is well
described with the dispersion curve (7). The density of the eigenvalues inside the shaded region
increases with the increase of N, approaching the continuum when N → ∞. However, a discrete
part of the EV spectrum where eigenvalues with a positive real part exist for some intervals in
ω indicates instability of the system.

For the on-site configuration there are branches of the discrete EV spectrum with complex
eigenvalues which indicate presence of the oscillatory instability. With the change of parameter
values four complex EVs appear, exist and merge after which only branches with pure imagi-
nary EVs remain in EV spectrum. Therefore, taking formally ω as a bifurcation parameter the
bifurcations of the Hopf type [12] for on-site dark modes are indicated. The bifurcation points
coincide with the intersection of the discrete and continuous part of the EV spectrum (Fig. 1).
The analytically calculated discrete branch for the on-site configuration (8) is in good agree-
ment with the numerical results in the region near the left boundary of the existence region
(small ω) where approximation used for the analytical calculations is valid.

For the inter-site configuration numerical results show existence of branches of the discrete
spectrum with pure real eigenvalues which indicates presence of the exponentially growing
instability (Fig. 1). Taking ω as a bifurcation parameter the merge of two purely real EVs after
which only pure imaginary EVs remain in discrete spectrum is formally noted as a tangential
(saddle-center) bifurcation [12]. However, the analytically calculated discrete branch for the
inter-site configuration (8) near the left boundary of the existence region (small ω) is embedded
in the continuous part of the spectrum which is not consistent with the numerical results. In this
case the bifurcation appears only near the upper boundary of the existence region (high ω -
small amplitudes) where approximate solution (8) is not valid. The correct approach in this
region is a calculation of the discrete spectrum in the limit Uc << 1, which gives the expression
consistent with the numerical results: Ωui = ±i

√
(γ −ω −2)2 +(γ −ω −2)+ 2ω(ω/γ−1).

The zero of this expression approximately corresponds to the bifurcation point ω b and indicates
existence of the pure imaginary branch (ω > ωb) associated with the existence of the neutrally
stable dark inter-site breathers (Fig.1).

Finally, we can conclude that all configurations of the dark solitons are unstable in the most
part of the existence region. However, there are also regions where only EVs with Re(Ω) ≈ 0
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Fig. 1. Eigenvalues spectrum for the on-site (a) and the inter-site (b) dark localized mode.
Numerical results are given with symbols, analytical with lines: squares (solid lines) for
extremal imaginary EV, solid circles (dashed lines) for the real and circles for the imaginary
part of EV discrete spectrum. The continuous EV spectrum is displayed as a shaded region.

Fig. 2. Illustration of the stable propagation of the unstaggered dark breathers: a) the on-
site near the left boundary of the existence region, ω = 0.08 and b) inter-site near the right
boundary of the existence region, ω = 8.9.

and Im(Ω) �= 0 exist which indicates neutral stability and possibility for existence of the dark
localized structures of the breather type. These regions for the on-site dark breather configura-
tions are near the lower (ω < ωb1, large amplitudes) and upper (ω > ωb2, small amplitudes)
boundaries of the existence region (Fig.1). The inter-site dark breather configurations can exist
only in the region near the upper boundary of the existence region (ω > ω b, small amplitudes).
These results are confirmed numerically directly solving the model equation (1) as a Cauchy
problem with initial conditions in a form of slightly perturbed dark solitons. The time-space
evolution shows existence of the stable dark breathers in the predicted regions (Fig. 2) and in-
stability in all other cases. This is consistent with the recently published experimental results
[8] where the experimental observation of the dark on-site and inter-site modes in defocusing
lithium niobate waveguide arrays are reported. However, we also observe propagation of long-
lived dark localized structures in the instability region with the weak instability growth rates
which agrees with the result in [9].

4. Transversal motion

In order to study the transverse motion of dark breathers across the lattice, instead of the con-
served quantities P and H, which diverge for the localized dark configuration we use the com-
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Fig. 3. The grand canonical free energy of the on-site and inter-site dark soliton (a). Free
transverse motion of the discrete dark breathers for b) ω = 0.08 and c) ω = 8.9.

plementary quantities Pc and Hc, where the Bloch-wave background (Ucw) is removed [1, 2]

Pc = ∑
n

(U2
cw −U2

n ), Hc = H + γ[Pc/(1+U2
cw)−N ln(1+Ucw)].

Then the grand canonical free energy [10] is defined as G c = Hc −ωPc.
The energy difference ΔGc between on-site and inter-site dark soliton configurations with

the same norm Pc has a sense of the potential barrier which arises from the discreteness of the
system and can be taken as a measure of the well-known Peierls-Nabarro (PN) barrier. The
Gc(Pc) for the unstaggered on-site and inter-site dark soliton configurations is displayed in Fig.
3. The remarkable feature of stability alternation between on-site and inter-site configurations
observed for the bright solitons in lattices with SF nolinearity is absent [11]. There are no dis-
crete transparent points which correspond to the zeros of the ΔG c. Instead, as can be clearly
seen, the energy difference ΔGc(Pc) for Pc << 1 and Pc >> 1 vanishes. These regions co-
incide with the regions where our previous stability analysis predicted the existence of the dark
breather configurations. These facts lead to the significant conclusion that the dark breathers in
these regions are not affected by the PN barrier and can freely move across the lattice elements.
As a consequence, we expect and confirm numerically that a small phase perturbation of any
dark soliton configuration (on-site or inter-site) will cause creation of the moving dark breather
(Fig. 3). This behavior indicates possibility for an easy experimental observation of the moving
dark breathers with a similar experimental setup as in [8]. All results and conclusions about
transversal motion remain qualitatively the same for the staggered dark breathers in a system
with SF nonlinearity.

5. Conclusion

In conclusion, we point out few significant results. The stability analysis indicates possibility of
the existence of stable on-site and inter-site dark breathers in lattices with saturable nonlinearity
which is confirmed numerically. This is found to be consistent with the recent experimental
observations [8]. The analysis based on the complementary conserved quantities indicates the
existence of regions with the zeroth value of the PN barrier where transversal motion of the dark
breathers is possible. The numerical results confirm this expectation and indicate possibility for
its experimental confirmation.
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