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Abstract

Discrete modulational instability within the first band of uniform one-dimensional waveguide arrays possessing a saturable self-defo-
cusing nonlinearity is investigated in detail within the coupled mode approach. Explicit analytical results for both the threshold and the
maximal gain of instability are compared with the corresponding data from waveguide arrays exhibiting Kerr nonlinearity. We find that
saturation bounds the interval of existence of discrete modulational instability, stabilizes the frequency region of perturbations around
±p/2 and decreases both gain and critical spatial frequency of perturbations.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modulational instability (MI) is a universal process in
which tiny phase and amplitude perturbations that are
always present in a wide input beam grow exponentially
during propagation under the interplay between diffraction
(in spatial domain) or dispersion (in temporal domain) and
nonlinearity. This process has been observed in various
nonlinear systems such as auroral ionosphere [1], mag-
neto-static waves [2], globular proteins [3], two-dimen-
sional lattices [4], or Bose–Einstein condensates [5]. In
nonlinear optics, MI has been studied in lossy fibers [6],
fiber gratings [7], for incoherent light [8], and second har-
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monic generation [9], to mention a few. Furthermore, this
phenomenon is investigated in media with different type
of the nonlinear response such as integrating [10], nonlocal
[11], quadratic [12], cubic-quintic [13], varying [14], and sat-
urable one [15,16].

Nonlinear waveguide arrays (NWA’s) represent arrays
of aligned channel waveguides which are close enough to
allow for tunnelling of energy from one channel to its
neighbors. It has been demonstrated that such systems
can be implemented in various all-optical devices [17–22].
The NWA’s can be either uniform [23–26] with a fixed dis-
tance between the channels of equal shape, modulated [19],
or nonuniform [18,22]. A uniform NWA is a periodic sys-
tem with corresponding Floquet–Bloch modes and band-
gap structure. Within the first band the beam dynamics
can be well described by virtue of a coupled mode
approach [21,27,28].

Discrete MI was proposed for uniform NWA with
cubic (Kerr) nonlinearity [24]. Thereafter, theoretical
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investigations of this process have been performed in re-
orientable [29] and saturable discrete media [30,31].
Experimentally, discrete MI was observed in cubic alu-
minium gallium arsenide (AlGaAs) [27], in photorefrac-
tive strontium–barium niobate (SBN) [28], and in
lithium niobate (LN) [32,33].

For both, semiconductor and photorefractive materials,
it is well known that the optically induced refractive index
change Dn becomes saturated at moderately high field
strengths [34]. The purpose of this paper is to investigate
in which way the effect of saturation modifies the MI behav-
ior of NWA’s. As powers required to observe nonlinear
effects in AlGaAs and LN differ by a few orders of magni-
tude [27,32], we reduce the model equations to the nondi-
mensional forms in Section 2. By taking into account
currently available experimental data we restrict the param-
eter space (i.e., coupling and nonlinear coefficient) to the
region where this comparison can be made. Explicit results
for the corresponding dispersion relation, gain, and critical
spatial frequency of small perturbations are given altogether
in this Section. Section 3 is devoted to a discussion of the
obtained results. Conclusions are drawn in the last section.
2. Model equations

According to Ref. [25], optical beam propagation in uni-
form one-dimensional (1D) NWA’s with self-defocusing
Kerr nonlinearity can be described by a set of linearly cou-
pled nonlinear ordinary differential equations:

i
dEn

dz
þ CKðEnþ1 þ En�1 � 2EnÞ � bK jEnj2En ¼ 0: ð1Þ

The propagation coordinate is denoted by z, En is the elec-
tric field of the nth element of the array, CK is the coupling
coefficient, while bK = w0n2/cAeff > 0 represents the nonlin-
ear coefficient due to the Kerr effect. Here w0 is the circular
frequency, c is the speed of light, Aeff is the effective cross-
sectional area of a single waveguide, whereas n2 represents
the Kerr coefficient. The effect of self-defocusing is ob-
served in various materials such as semiconductor doped
glasses [35], ethanol solutions of Japanese green tea [36],
and lead zirconate titanate [37]. Both Y junctions and
bright temporal solitons are observed in such media
[38,39].

Assuming a stationary solution of this equation in the
form En = E0exp[i(�qz + np)], one can get the following
dispersion relation: q = 4Ck + bK|E0|2. The amplitude of
this uniform staggered solution, where adjacent elements
of the array are out of phase, is given by:

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� 4CK

bK

s
: ð2Þ

This solution exists if q > 4CK.
On the other hand, by taking into account the effect of

saturation [15,16,40], one can describe beam propagation
in a self-defocusing 1D NWA with the following set of dif-
ference-differential equations [31]:

i
dEn

dz
þ CSðEnþ1 þ En�1 � 2EnÞ � bS

jEnj2En

jEdj2 þ jEnj2
¼ 0: ð3Þ

Here Ed is the dark electrical field while bS > 0 represents
the corresponding nonlinear coefficient. Now, the above
mentioned stationary solution has a dispersion relation of
the form q = 4CS + bS|E0|2(|E0|2 + |Ed|2)�1 with amplitude

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� 4CS

bS � ðq� 4CSÞ
jEdj2

s
: ð4Þ

Contrary to the Kerr case, here we have a bounded domain
of existence: 4CS 6 q 6 bS + 4CS.

The perturbed solution [E0 + dn(z)] exp[i(�qz + np)],
where |dn|� E0, satisfies the corresponding difference-dif-
ferential equation

i
ddn

dz
� CKðdnþ1 þ dn�1 � 2dnÞ � bK jE0j2ðdn þ d�nÞ ¼ 0 ð5Þ

in cubic NWA, and

i
ddn

dz
� CSðdnþ1 þ dn�1 � 2dnÞ � bS

jE0j2

jEdj2 þ jE0j2

� 1� jE0j2

jEdj2 þ jE0j2

 !
dn þ d�n
� �

¼ 0 ð6Þ

in NWA with saturable nonlinearity.
The linear stability of a uniform solution has been inves-

tigated with different forms of perturbations [23,24,30].
Here, we adopt the perturbation form from Ref. [23]:
dn = �1 exp[i(Qz � nXD)] + �2 exp[�i(Qz � nXD)], in which
�1,2 are constants while Q and X are parameters of a mod-
ulated wave. After a straightforward calculation one
obtains the following expressions for the MI gain
(Q = ImC):

CK ¼ �2
ffiffiffiffiffiffiffiffiffi
2CK

p
sinðXD=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bKE2

0 � 2CK sin2ðXD=2Þ
q

ð7Þ

in Kerr case, and

CS ¼ �2
ffiffiffiffiffiffiffiffi
2CS

p
sinðXD=2Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bS

jE0j2

jEdj2 þ jE0j2
1� jE0j2

jEdj2 þ jE0j2

 !
� 2CS sin2ðXD=2Þ

vuut
ð8Þ

in saturable case. Instability occurs if CK,S > 0, which is ful-
filled for 0 < X < 2pD�1. All uniform waves with wave
numbers from this interval will be unstable if the input
intensity exceeds the critical (threshold) value, i.e. for the
case where the (saturable) nonlinearity exceeds linear dif-
fraction effects. In cubic NWA’s this value reads:

jE0j2 P ðjE0j2Þcr ¼
2CK

bK
sin2ðXD=2Þ: ð9Þ
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Fig. 1. Threshold behavior of discrete MI in saturable nonlinear media:
dependence of (a) lower and (b) upper threshold on the spatial frequency
of the perturbation for b = 15 and different values of coupling constants.
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In saturable NWA’s uniform staggered waves exist only in
a limited interval. Therefore, the MI region is bounded
from both below and above:

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8CS

bS
sin2ðXD=2Þ

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8CS

bS
sin2ðXD=2Þ

q jEdj2

6 jE0j2 6
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8CS

bS
sin2ðXD=2Þ

q
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8CS

bS
sin2ðXD=2Þ

q jEdj2: ð10Þ

Maximal gain (determined from the condition oCK,S/oX =
0) can be achieved in both cases if Xmax = 2pD�1(m + 0.5),
where m is an integer. Additionally, maximal gain appears
for

Xmax
K ¼ 2

D
arcsin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bK jE0j2

4CK

s0@ 1A ð11Þ

in Kerr case, and

Xmax
S ¼ 2

D
arcsin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bS

4CS

jE0j2

jEdj2 þ jE0j2
1� jE0j2

jEdj2 þ jE0j2

 !vuut0@ 1A
ð12Þ

in saturable case. The maximal gain is given by

Cmax
K ¼ bK jE0j2; Cmax

S ¼ bS
jE0j2

jEdj2 þ jE0j2
1� jE0j2

jEdj2 þ jE0j2

 !
;

ð13Þ

respectively.
To concretize these results we restrict our general con-

siderations of NWA’s to the semiconductor AlGaAs and
photovoltaic LN crystals. AlGaAs is sensitive in the infra-
red part of the spectrum while the usual laser power neces-
sary to excite reasonable nonlinear effects in NWA is in the
range of hundreds of watts. The refractive index nr of
AlGaAs depends on composition and varies between 3.4
and 3.5 [27,41]. The Kerr coefficient for this material is
approximately n2 = 2 · 10�17 m2 W�1 [27,39]. On the other
hand, LN is sensitive in the visible part of the spectrum
(blue–green wavelengths) and the required laser power is
of the order of microwatts [32,42]. Here, the (extraordi-
nary) refractive index for green light of k = 514.5 nm is
nr = 2.242. In order to realize the influence of different
forms of the nonlinear term in Eqs. (1) and (3) we have
reduced the model equations to a nondimensional form.
The propagation coordinate is now nK;S ¼ z=ðkK;Sx2

0Þ, where
kK,S = 2pnrK,S/kK,S and x0 is an arbitrary length. We
choose x0 = 10 lm, which is of the order of a typical lattice
period. The normalized distance between the centers of
adjacent elements is eD ¼ D=x0. The coupling constants
and nonlinear coefficients are multiplied with the belonging
factor kK;Sx2

0. The nondimensional variables are U n ¼
En=

ffiffiffi
P
p

and Un = En/Ed, respectively, where P is light
power. All above mentioned results on dispersion relation,
MI gain, and maximal frequency of perturbations are
valid. It is only necessary to perform the following substi-
tutions: z! n, En! Un, E0! U0, |Ed|2! 1, D! eD,
CK;S ! eCK;S, and bK;S ! ~bK;S .

Finally, it is necessary to determine the realistic joint
parameter range. With x0 = 10 lm the usual normalized
distance is in the range [0.5,2] [27,28,32]. Experimentally
reported values for the coupling constants in the two mate-
rials are typically less than 2 mm�1 [27,32]. Thus the corre-
sponding dimensionless coupling constants are in the range
of 1. For waveguide cross sections Aeff as low as 10 lm2 the
nonlinear coefficient in AlGaAs can be estimated to be less
than 10 m�1 W�1 With typical maximum input powers per
channel that are of the order of 1 kW [27], normalized val-
ues of the coupling constant are in the range [0, 30]. The
nonlinearity in LN crystals originates from the internal
photovoltaic field that can be additionally enhanced by a
suitable doping process [43]. Samples with a nonlinear
coefficient up to 15 mm�1 have been fabricated; this value
corresponds to a nonlinear refractive index change of
Dnmax = 7 · 10�4 (see Fig. 4 in Ref. [42]). Here, normalized
values of the nonlinear coefficient lie in [0,40]. In what fol-
lows we choose the following set of coupling constants C 2
{0.5,1.5,2.5} and nonlinear coefficients b 2 {5,10,15,20,25}
(we dropped out � for the sake of the simplicity). All
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results are given for uniform arrays consisting of 28 chan-
nels with a corresponding normalized distance equal to
0.76.

3. Discussion

Firstly, we have investigated in which way the parame-
ters of the discrete saturable system influence the lower
and the upper threshold for the onset of MI that are given
by Eq. (10). The lower threshold increases with stronger
coupling while the upper one decreases, as illustrated in
Fig. 1a and b, respectively. Due to symmetry, only the posi-
tive frequency region is presented. Furthermore, the fre-
quency region around ±p/2 becomes modulationally
stable and broadens with increase of C. Therefore, with
the nonlinearity fixed, stronger coupling has an inhibiting
influence on MI. On the other hand, for fixed coupling,
an enhancement of the nonlinearity leads to a drop of
the lower threshold (Fig. 2a) and to a growth of the upper
one (Fig. 2b). Additionally, stronger nonlinearity causes a
destabilization of the frequency region around ±p/2. Thus,
an increase of nonlinearity has a catalytic role on the MI
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Fig. 2. Threshold behavior of discrete MI in saturable nonlinear media:
dependence of (a) lower and (b) upper threshold on the spatial frequency
of the perturbation for C = 1.5 and different values of nonlinear
coefficients.
process. The same is true for the single threshold within
the Kerr model [25].

One may notice in Fig. 3a and b that, for fixed values of
the nonlinear coefficient and beam amplitude, stronger
coupling decreases the critical spatial frequency that is
given by Eqs. (11) and (12). Physically, stronger coupling
results in broader products of MI (discrete solitons), inde-
pendently of the type of nonlinearity. Consequently, the
number of these localized structures per given array (i.e.,
spatial frequency) decreases. In the Kerr case of AlGaAs
(Fig. 3a) there exists an unique critical spatial frequency
that can be obtained for different values of beam amplitude
and coupling constant (i.e., stronger coupling requires
higher amplitudes). On the contrary, for saturable LN
NWA’s (Fig. 3b) there are different critical spatial frequen-
cies which have the same amplitude and whose values
decrease with stronger coupling.

In Fig. 4a and b the dependence of the critical spatial fre-
quency on the beam amplitude is presented for different val-
ues of nonlinearity, whereas both the distance between
waveguides and the coupling coefficient are fixed. The fact
that magnification of the nonlinearity increases the critical
spatial frequency can be easily explained as follows: A stron-
ger nonlinearity of the system leads to a larger number of
very narrow strongly localized modes in discrete MI.
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Fig. 3. Critical spatial frequency as a function of the square of the
normalized wave amplitude in (a) Kerr and (b) saturable case. Normalized
distance between waveguides is D = 0.76, while nonlinear coefficient is
b = 5.
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The critical spatial frequency as a function of the square
of the normalized beam amplitude in both AlGaAs
(squares) and LN NWA’s (circles) is shown in Fig. 5a.
For a given period of the array and fixed values of both
coupling constant and nonlinear coefficient, saturation
decreases the critical spatial frequency. In the small ampli-
tude limit, in which Eq. (3) is reduced to Eq. (1), there is
indeed almost no difference between these two curves.
However, in the region of medium amplitudes, the mono-
tonically growing Kerr curve reaches a maximal value (that
is equal to p/D), while the saturable one reaches a corre-
sponding maximum and then slowly decreases in the region
of higher amplitudes. A similar behavior has been observed
in semiconductor-doped glass fibers [15].

In Fig. 5b we present the dependence of the gain on the
square of the beam’s amplitude in both arrays. For a given
period of the array and fixed values of the spatial frequency
of perturbation, nonlinearity, and coupling strength, one
can notice that saturation (notation is the same as in
Fig. 5a) significantly decreases the MI gain and also
restricts the region of amplitudes in which MI can occur.
As before, in the small amplitude limit both curves
coincide.

Finally, the gain dependence of the spatial frequency of
MI for different values of the amplitude and fixed values of
both nonlinearity and coupling strength is given in Fig. 6a
and b. As in Figs. 1 and 2, only the positive frequency
region is presented. In AlGaAs NWA’s (Fig. 6a) the gain
diminishes with decrease of the amplitude. In the small
amplitude regime, the position of the (critical) spatial fre-
quency for which the gain is maximal moves from the cen-
ter (XD = 0) towards the edges of the perturbation’s
frequency domain (XD = ±p). For very low amplitudes
the central region on the x-axis becomes modulationally
stable (not presented here). As one can see the relative dif-
ference between maximal gain and the gain from adjacent
frequencies is quite small especially in the small amplitude
regime, where the gain distribution has a wide plateau. As a
result, in this region the MI process usually ends up in
oscillations [23,30]. Localized structures can be eventually
formed in the high amplitude region, where only one fre-
quency with maximal gain can prevail. In LN NWA’s
(Fig. 6b) gain is significantly smaller compared to the Kerr
case and decreases with increase of the beam amplitude.
Furthermore, the region of spatial frequencies where this
instability may occur diminishes for more intensive beams.
Similar as in Refs. [15,40], a degenerate state that evolves
from two inputs with different power exists.



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

25

K

D

|U
0
|2=1

|U
0
|2=5

|U
0
|2=10

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S

D

|U
0
|2=1

|U
0
|2=5

|U
0
|2=10

(b)

Fig. 6. Dependence of gain on the spatial frequency of the perturbation
for different values of the square of the normalized amplitude in (a) Kerr
case and (b) in saturable case. System’s parameters are C = 1.5 and b = 5.

234 M. Stepić et al. / Optics Communications 267 (2006) 229–235
It is necessary to emphasize that the linear stability anal-
ysis which is used to obtain the threshold of instability and
corresponding gain is not sufficient to describe the compli-
cated system dynamics after the initial stage of MI [26]. Also,
this approach does not take into account possible interac-
tions of the perturbations with the continuous band spec-
trum which may influence the process of MI. It assumes
that this influence may be neglected in the parameter space
where a tight-binding approximation is justified. However,
as shown on the example of the so-called Dirac-comb nonlin-
ear lattice [44], these interactions could substantially influ-
ence the dynamics of MI necessitating a more complete
analysis based on a continuous model. Here, it is interesting
to mention that one can get Eqs. (7)–(10) no matter which
form of perturbations from Refs. [23,24,30] is chosen. For
example, if the perturbation from Ref. [30] is taken, one
should just replace XD/2 with pN/j where j denotes the num-
ber of humps of the perturbation in the array (in the above
mentioned reference j = 1 was taken).

4. Conclusion

Modulational instability in one-dimensional discrete
media with saturable nonlinearity is studied in detail on
the example of permanent channel waveguide arrays in pho-
tovoltaic lithium niobate. Instability of wide input staggered
beams in such intrinsically self-defocusing media occurs at
the edges of the first Brillouin zone where anomalous diffrac-
tion is present. Exploiting the fact that the difference
between the more accurate Floquet–Bloch approach and
the simpler coupled mode approach is small in these regions
we have employed the latter one to obtain explicit results for
the threshold of instability, maximal spatial frequency, and
gain of perturbations. Contrary to the Kerr case, discrete
MI in saturable media has a bounded interval of existence.
Stronger coupling has an inhibiting role on the MI process,
while stronger nonlinearity expedites it. Comparing the cor-
responding explicit results we demonstrate that saturation
stabilizes the frequency region of perturbations around
±p/2 and decreases both critical spatial frequency of pertur-
bations and gain. As the cubic DNLS equation is only a
small amplitude limit of the saturable DNLS equation these
results could be interesting as a generalization of the discrete
MI results in the former case. Finally, our results may be
useful in investigations of MI in both Bose–Einstein conden-
sates and arrays of Josephson junctions which could be
described by similar model equations.
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[18] W. Królikowski, Yu. S. Kivshar, J. Opt. Soc. Am. B 13 (1996) 876.
[19] R.A. Vicencio, M.I. Molina, Yu. S. Kivshar, Opt. Lett. 28 (2003)

1942.
[20] D. Neshev, A.A. Sukhorukov, B. Hanna, W. Królikowski, Yu. S.

Kivshar, Phys. Rev. Lett. 93 (2004) 083905.
[21] J. Meier, G.I. Stegeman, D.N. Christodoulides, Y. Silberberg, R.

Morandotti, H. Yang, G. Salamo, M. Sorel, J.S. Aitchinson, Opt.
Lett. 30 (2005) 1027.

[22] U. Peschel, R. Morandotti, J.S. Aitchinson, H.S. Eisenberg, Y.
Silberberg, Appl. Phys. Lett. 75 (1999) 1348.

[23] D.N. Christodoulides, R.I. Joseph, Opt. Lett. 13 (1988) 794.
[24] Yu. S. Kivshar, M. Peyrard, Phys. Rev. A 46 (1992) 3198.
[25] Yu. S. Kivshar, Opt. Lett. 18 (1993) 1147.
[26] J. Leon, M. Manna, Phys. Rev. Lett. 83 (1999) 2324.
[27] J. Meier, G.I. Stegeman, D.N. Christodoulides, Y. Silberberg, R.

Morandotti, H. Yang, G. Salamo, M. Sorel, J.S. Aitchinson, Phys.
Rev. Lett. 92 (2004) 163902.

[28] M. Chauvet, G. Fu, G. Salamo, J.W. Fleischer, M. Segev, Nonlinear
guided waves and their applications topical meeting on CD-ROM,
The Optical Society of America, Washington, DC, 2005, WD 39.

[29] M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, Nature
432 (2004) 733.
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