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Abstract. Symmetric collisions of two discrete breathers in the lattice with saturable nonlinearity are
investigated. The strong correlation of the collision properties and the parameters of colliding breathers
(power, velocity, and phase difference), lattice parameters and position of the collision point is found.
This is related to the internal structure of the colliding breathers and energy exchange with the phonon
background. The type of collision changes from elastic to the inelastic (the breathers merging, multi-bounce
interactions, breather creation etc.) with the increasing of the colliding breather power. Collision of high
power breathers always results in the breather fusion. The elastic and inelastic collisions are related to the
periodic and quasi-periodic colliding breathers, respectively.

PACS. 42.65.Tg Optical solitons; nonlinear guided waves – 63.20.Pw Localized modes

1 Introduction

Investigation of the localized mode interactions is one
of the central topics of the nonlinear dynamics. It may
find applications in photonics (all-optical switching, steer-
ing, [1,2]), in biological phenomena (denaturation of
DNA [3,4]), in the physics of Bose-Einstein condensates
(matter wave soliton applications [5,6]), etc. In integrable
systems soliton collisions are elastic, i.e. the colliding soli-
tons are not affected by the collisions. On the contrary,
in nonintegrable systems various inelastic effects such as
trapping and formation of bound states, multi-bounce in-
teractions [7], fractality in the collision output [8], etc. are
possible. This diversity is usually associated with the in-
ternal structure of colliding localized modes [9], and their
mutual radiationless energy exchange [1,10].

Interactions of the localized modes are closely related
to the existence of moving localized modes. In continu-
ous nonlinear media, as a consequence of the continuous
translational invariance, moving localized modes can be
initiated at an arbitrary position and with an arbitrary
transverse velocity. However, in discrete nonlinear media,
the discreteness breaks translational invariance of the cor-
responding continuous system. As a consequence, moving
discrete localized modes can be created only at some po-
sitions in the lattice and with transverse velocities within
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some defined intervals. In particular, in lattices with sat-
urable nonlinearity, the localized mode of breather type
with high power exists only for a few values of the total
power and transverse velocity [11–13].

While interactions of the localized modes in contin-
uous systems with saturable nonlinearity are extensively
studied [14,15], this is not a case with the correspond-
ing interactions of discrete localized modes [16]. There-
fore, in this paper, the collisions of discrete breathers in
lattices with saturable nonlinearity [11,12,16] are stud-
ied. Collision properties in the discrete systems with
saturable nonlinearity are compared with the collision
properties in the discrete systems with other types of
nonlinearity [1], and in continuous systems with saturable
nonlinearity [14,15] and power low nonlinearity [17]. In
Section 2, brief overview of the one-dimensional DNLS
lattice model with saturable nonlinearity is presented.
The breather internal structure and characteristics of
the breather dynamics are indicated by the perturbation
approach. The existence and stability of bright moving
breathers are discussed in Section 3. Regarding stability
two approaches are exploited: the dynamical and map-
ping stability analysis. In Section 4, the correspondence
of the interaction properties, the internal structure and
the dynamics of the colliding breathers, is studied using
Fourier analysis. Correlation of the collision properties and
the system parameters (total power, breathers transverse
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velocity, and the position of the collision center) is dis-
cussed. Conclusions are summarized in Section 5.

2 Model

The one-dimensional DNLS lattice model with saturable
nonlinearity [11,12] is given by

i
dUn

dt
+ (Un+1 + Un−1 − 2Un) − γ

Un

1 + |Un|2 = 0, (1)

where Un is the wave function in the nth lattice ele-
ment (n = 1, ...N) with periodic boundary conditions,
(UN+1 = U1), and γ is the nonlinearity parameter. Equa-
tion (1) represents a system of linearly coupled nonlinear
difference-differential equations which are not integrable.
Here, three integral quantities of interest for the future
analysis are power P , Hamiltonian H and momentum Q

P =
∑

n

|Un|2, (2)

H =
∑

n

[γ ln (1 + |Un|2) + |Un−1 − Un|2], (3)

Q =
i

2

∑

n

(U∗
n+1 Un − U∗

n Un+1). (4)

The P and H are conserved as a consequence of the sys-
tem invariance with respect to the phase shift and time
shift, respectively. Due to the symmetry breaking caused
by the lattice discreteness, the system is not invariant with
respect to the spatial translations. Consequently, momen-
tum Q is not conserved [18].

The stationary solution to equation (1) is of the form

Un(t) = φn(ω)e−iωt, (5)

where ω is the propagation parameter. The resulting set of
coupled algebraic equations for the real function φn [12],
after some simple algebra, coincides with the station-
ary generalized discrete nonlinear Schrödinger (GDNLS)
equation [19,20] (V = 1, µ = 1)

(ω−2−γ)φn+(φn+1+φn−1)(1+φ2
n)+(ω−2)φ3

n = 0. (6)

At the value ω = 2, the equation (6) is the stationary
version of the discrete, integrable Ablowitz-Ladik equa-
tion [21].

Previous investigations [11–13] have confirmed the ex-
istence of two types of bright stationary solitons with a
single maximum in a lattice. These are the on-site soli-
ton, centered at the lattice element, and inter-site soliton,
centered between two neighboring lattice elements [22].
The bright solitons exist in the parameter range ω ≤ γ.
Between two coexisting modes with the fixed power, the
stable mode is characterized with lower energy. This is
confirmed by the dynamical and mapping stability analy-
sis [13]. Moving localized mode can be generated by trans-
versely kicking the unstable stationary mode. The result-
ing moving localized mode of the breather type has the
same power as the corresponding stationary mode. An an-
alytical proof of the stability of moving breathers is still a
challenge [23–25].

2.1 Perturbational approach

The dynamics close to the solution φn, equation (5),
can be described by introducing the perturbation expan-
sion [18]

Un(t) = [φn + λεn(t) + λ2νn(t) + ...] exp (−iω t), (7)

where λ is a small expansion parameter, and εn, νn are
perturbation terms in a frame rotating with the frequency
ω. Note that generally a slow time dependence of the pa-
rameter ω can be allowed as in [18]. After substituting the
expansion (7) into (1) and identifying coefficients for con-
secutive powers of λ, the zeroth order equation coincides
with (6), while the first and second order equations can
be written as

iε̇n + (ω − 2)εn + εn+1 + εn−1 − γ
εn − φ2

nε∗n
(1 + φ2

n)2
= 0, (8)

iν̇n + (ω − 2)νn + νn+1 + νn−1

− γ
νn − φ2

nν∗
n − 2φn|εn|2 − ε2φn

(1 + φ2
n)2

= 0. (9)

The zeroth, first and second order equations describe the
breather shape, behavior of the small breather perturba-
tions, and long-time behavior of the perturbed breather,
respectively [18].

The dynamics of breather perturbations can be con-
sidered following the approach used in [18], established
for the DNLS model with cubic nonlinearity. The substi-
tution in the form

εn(t) =
1
2
a(Vn + Wn) exp (−iωp t)

+
1
2
a∗(V ∗

n − W ∗
n) exp (iωp t), (10)

gives

ωpVn = −(ω − 2)Wn − Wn+1 − Wn−1 + γ
Wn

1 + φ2
n

≡ L0{Wn}, (11)

ωpWn = −(ω − 2)Vn − Vn+1 − Vn−1 + γ
(1 − φ2

n)Vn

(1 + φ2
n)2

≡ L1{Vn}, (12)

or in matrix form

M(0)

[ {Vn}
{Wn}

]
=

[
0 L0

L1 0

] [ {Vn}
{Wn}

]
= ωp

[ {Vn}
{Wn}

]
. (13)

Vector ({Vn}, {−iWn}) is the eigenvector of the corre-
sponding Floquet matrix with the eigenvalue exp (iωp T ),
where the period T is arbitrary due to the time inde-
pendence of the coefficients in (11) and (12), [18]. The
spectrum of non-Hermitian matrix M(0) can be divided
into the continuous (phonon) part, corresponding to ex-
tended eigenvectors, and discrete part, corresponding to
the breather internal modes. The phonon spectrum for any
perturbed localized solution φn can be derived from the
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limit |n| → ∞, since the condition φn → 0 reduces sys-
tem (11), (12) into two uncoupled equations for Vn + Wn

and Vn − Wn. Assuming Vn ± Wn ≈ exp (±iq±n), two
dispersion relations are obtained

ωp = ±(ω − 2 − γ) ∓ 2 cos (q). (14)

The phonon spectrum consists of two branches,|ωp| ε [γ −
ω, γ−ω +4], symmetrically located around ωp = 0, which
never overlap. Two eigenvectors correspond to the same
solution of equation (13). Therefore, only ωp > 0 is con-
sidered. Spatially localized eigensolutions associated with
the eigenvalues outside the phonon spectrum, interacting
with the unperturbed soliton, can excite internal modes.

The equation (9) gives possibility to consider the long-
time behavior of the localized mode in the presence of per-
turbations. The terms on the righthand side containing the
second order of ε describe the interactions between modes
[18,24]. Substitution of the expansion (10) into (9) (as-
suming φn, Vn, Wn are real [18]) gives the following equa-
tion

L(ω)νn = −γφn

2
(3V 2

n + W 2
n)|a|2

+
γφn

2
[
(3V 2

n − W 2
n)Re(a2e−2iωpt)

]

+
2iVnWnγφn

2
Im(a2e−2iωpt). (15)

The righthand side of equation (15) contains a static part,
and a part involving frequencies ±2ωp. When 2|ωp| is in-
side the phonon band of the perturbed solution, a res-
onance occurs resulting in the energy exchange between
breather and phonon band. On the other hand, when 2|ωp|
is in the discrete part of perturbed solution spectrum, the
resonance can excite a new internal oscillation of the lo-
calized mode. Similar reasoning can be extended to the
higher order equations with respect to the small pertur-
bation (see the beginning of this section) [18].

The phonon-breather interaction (the breather radi-
ates or absorbs energy from the background), and the
breather interaction with discrete part of perturbation
spectrum are main mechanisms for the excitation of the
internal mode dynamics of the breather [9], which is ob-
served in the numerical experiments.

2.2 Numerical approach

The numerical model is based on the 6th order Runge-
Kutta procedure. Most of the results presented here are
obtained for fixed value of the parameter γ = 9.1 [12,13],
laying inside the domain where the cascade saturation
mechanism is significant. The transverse motion is initi-
ated by adding the phase term to the stationary soliton,
Un → Un exp (i k n), where k is the transverse velocity pa-
rameter. In order to initialize the symmetric collision of
two solitons they are directed at each other, i.e. k1 = k
and k2 = −k, where indices note the colliding modes.

The power spectrum (the spectrum of Re(Unc(t)),
where at nc the amplitude is maximal) and the amplitude
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Fig. 1. The total power of on-site localized modes as a function
of parameter ω for different γ in log-log proportion. The moving
breathers are observed for the critical values of parameter ω,
i.e. at turning points (straight lines), and in the gray region.

spectrum (the spectrum of |Unc(t)|), are calculated with
IMSL subroutine based on the fast-Fourier technique [26].

3 Moving localized modes

Particularity of the systems with saturable nonlinearity
(continuous and discrete), in comparison to the systems
with cubic nonlinearity, is the cascade mechanism of the
amplitude saturation [12,17]. This mechanism becomes
significant in the lattice parameter range γ > γc, where
γc corresponds to the critical P (ω) curve in Figure 1. In
this region (γ > γc), the moving localized mode of high
power can be obtained by transversely kicking the cor-
responding unstable stationary localized mode, Figures 1
and 2. The previous results concerning the cascade mech-
anism for amplitude saturation are briefly commented in
the next part of this section.

Initially, the stationary localized discrete mode is a
soliton (without internal structure), but the correspond-
ing transversely moving discrete mode is a breather with
characteristic internal frequencies. This is a direct con-
sequence of the system discreteness and the breaking of
the continuous translational invariance in the lattice sys-
tems as indicated by the non-conservation of Q [1]. It is
confirmed numerically in the reference [12]. The symme-
try breaking can be associated with the creation of the
Peierls-Nabarro potential barrier to the localized mode
transverse motion [2,27]. The trapped - moving localized
mode bifurcation is dependent on the system parameters,
as shown in Figures 1 and 2.

In the lattice with saturable nonlinearity, the moving
breathers with high power are found only for a few values
of the parameters P and k, contrary to the correspond-
ing continuous case. More precisely, a bifurcation trapped-
moving mode, in a lattice with saturable nonlinearity,
is observed in some ranges of k at ω = 2 (P = 21.63),
ω = 1.05 (P = 64.03), ω = 0.675 (P = 140.56) as noted in
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Fig. 2. Bifurcation trapped-moving breather is found in the
area around the ω = γ line, in the area ω < γ < 3, at ω =
0.675, 1.05 and ω = 2 (a). Mobility of the localized modes with
ω = 2 (b). Trapped, transiently moving and moving modes are
shown with white, light gray and gray areas, respectively. In
all cases the mobility is k and t dependent.

Figures 1 and 2. In the first case, moving breather with
constant transverse velocity exists for 0.001 < k < 0.02. In
all other cases, the moving breather gradually radiates en-
ergy and finally becomes trapped by the lattice elements.
In the present model, radiation is related to the internal
mode dynamics of the moving breather (Sect. 2.1) [18]
when the internal breather oscillations resonate with the
continuous part of the phonon spectrum. The radiation
rate of the moving breather depends on ω and the initial
transverse velocity k.

The primary interest of this study is focused on the
parameter range above the critical curve (Fig. 1), where
the cascade saturation mechanism is significant.

3.1 Mapping approach

From the viewpoint of the mapping stability analysis, the
breaking of the continuous translational invariance in the
lattice systems is associated with the transversal inter-
sections of the stable and unstable manifolds of the fixed
point in the origin of the corresponding map [13,20]. The
transversal intersections are the seeds for the chaoticity
of the map trajectories which is related to the trapping

of the corresponding localized mode by the lattice ele-
ments. However, for total power values, P , which corre-
spond to the ω ≈ γ and ω = 2, the system integrability
is ‘recovered’, equation (2) [13]. In these cases the stable
and unstable manifolds of the fixed point at map origin
overlap forming nearly perfect separatrix. Consequently,
the effective Pierels-Nabarro barrier vanishes [13] giving
a possibility for transverse motion of the localized mode.
Note that the zeros of this effective PN barrier do not cor-
respond with the zeros of the PN barrier defined as energy
difference between on- and inter-site discrete modes. How-
ever, recently an alternative definition of the PN barrier as
grand canonical barrier ∆G = Gon−Ginter (G = H−ωP )
is proposed [28]. Zeros of ∆G correspond to the transpar-
ent points obtained by our mapping stability analysis. The
initial transverse kick causes the transverse motion of the
localized mode with simultaneous excitation of its inter-
nal oscillations, which is manifested as a ‘breathing’ of the
moving localized mode.

The breather propagation properties can be inter-
preted as the result of the breather-lattice interaction,
i.e. of the resonance between the breather internal os-
cillations and environment oscillations (as discussed in
references [18] for the case of the DNLS with cubic
nonlinearity). This interpretation is supported by the nu-
merical spectral analysis. For example, the power and am-
plitude spectrums of the moving breathers with low power
P = 0.14, k = 0.05, and high power P = 21.63, k = 0.015
are shown in Figure 3. In the first case the power spectrum
is characterized by single frequency ω ≈ 9, and the ampli-
tude spectrum is characterized by a single self-frequency
close to 0.1 (the amplitude oscillations of small intensity).
In the case of the moving mode with high power, the power
spectrum is composed of one main peak around ω ≈ 1.9,
which is wider than the one in the first case, and addi-
tional two satellite peaks with incommensurate frequen-
cies at ω1 ≈ 1.60, ω2 ≈ 2.35. The amplitude spectrum is
more irregular with several peaks at frequencies ordered
as 1 : 2 : 4 : .... It means that the moving breather of small
and high P is periodic and quasi-periodic in time [29], re-
spectively (Figs. 3c, 3f).

4 Symmetric collisions

The properties of breather collisions depend on the pa-
rameters of colliding breathers (power, velocity, and phase
difference), lattice parameters and position of the colli-
sion point. In order to simplify complex dependence on
the colliding breathers parameters, the study is restricted
on symmetric collisions: colliding breathers are identical
with opposite velocities k1 = k and k2 = −k. Two dif-
ferent cases are numerically simulated with respect to the
relative position of the collision point, x0, in the lattice:
on-site collisions with x0 centered on lattice element and
inter-site collisions with x0 centered between two neigh-
boring lattice elements [10]. Therefore, the properties of
the symmetric breathers collisions depend on the system
parameters P, ω, k, γ, which are mutually interconnected.
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Fig. 3. The power spectrum (a), (d), amplitude spectrum (b), (e), Re(Uc) (dashed curve) and |Uc| (solid curve) against t (c),
(f). Parameters are γ = 9.1, ω = 9, P = 0.14, k = 0.05 (a)-(c) and ω = 2, P = 21.63, k = 0.015 (d)-(f). The index c notes the
center of breather. In plot (d) the frequencies of the satellite peaks are ω1 = 1.60 and ω2 = 2.35.

4.1 On-site and inter-site collisions

Generally, in the whole region of the moving breathers
existence, by fixing the transverse velocity k, the increase
of the total power changes the type of on-site collision
from elastic, Figure 4a, through inelastic with formation
of bounded state after multiple collisions, Figure 4b, to
the fusion of colliding breathers, Figure 4c. Considering
the area above the curve γc in Figure 5, in the region
of very low powers (where the PN barrier vanishes) the
breather collisions are always elastic, Figure 4a.

The properties of the on-site collision, in the region of
critical P for γ > γc (border of the gray area in Fig. 5),
depend on the colliding breathers transverse velocity k.
This region is characterized by the small finite value of
the Hon − Hinter near the first zero of the energy differ-
ence (see Fig. 1 in [12]). The colliding on-site or inter-site
breathers form bounded state after multiple collisions for
small k, or continue transverse propagation across lattice
for high k. Relating the value of k to the breather ki-
netic energy, the observed behavior can be interpreted as
follows. Trapping by lattice elements or transverse prop-
agation occurs when kinetic energy of colliding breathers
is lower or higher than the corresponding PN potential
barrier of the lattice, respectively.

In the lattice with saturable nonlinearity, both on-site
and inter-site symmetric collisions of two breathers with
high power finally result into the breathers fusion, Fig-
ure 4c. The created collision complex, after transient en-
ergy exchange between the collision complex and lattice,
is trapped by the lattice. During this transient phase the
collision complex with power P and energy H relaxes to-
wards more stable configuration with the same power and
lower energy Hs. For given P , the value of Hs is esti-
mated as the lower one between energies of the corre-
sponding stationary on-site and inter-site localized modes,
i.e. Hs = min (Hon, Hinter) (Figs. 4b, 4c). As a conse-
quence, the trapping center is on the lattice element when
Hs ≈ Hon, or between two neighboring lattice elements
when Hs ≈ Hinter . However, the position of the trapping
center in the lattice is departed from central lattice posi-
tion (asymmetry in collision output in Figs. 4b, 4c). This
is a result of the sensitivity of the collision complex, ini-
tially formed at the maximum of the phenomenological
lattice potential, to small perturbations. Thus, although
the system is symmetric, the presence of small pertur-
bations (numerical noise) induce asymmetries in collision
output. This behavior is consistent with the consideration
in Section 3.1. and requires additional analysis.

The region around the γc curve in Figure 1 is
‘marginal’ with respect to the type of collisions. For on-site
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Fig. 4. On-site elastic (a) and inelastic (b), (c) collisions be-
tween two moving breathers. For all cases k = 0.015. Collision
complexes formed after inelastic collisions with P = 2P1,2 =
0.536(b), 43.26(c) and H = 2H1,2 = 9.64(b), 216.89(c) radi-
ate energy and finally are trapped on lattice element (b) or
between two neighboring lattice elements (c). Final state is
characterized by the same power P and lower energy, Hs ≈
9.25(b), 189.33(c).

collisions of the moving modes with the P (ω) curve below
the critical curve in Figure 5, the increase of k changes the
collision outcome from the bounded state of two colliding
modes, through the pair of the unchanged colliding modes,
towards breather fusion or breather creation [14,16,17,30]
(the last outcome is observed only for high P ), Figure 6.
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Fig. 5. The P against parameter ω as in figure 1. The moving
breathers are observed for the critical values of parameter ω
marked by the straight lines, and in the gray region. The dotted
curve corresponds to the γc in Figure 1. The characteristic
types of symmetric collisions are illustrated in boxes. Arrow
shows direction of increasing k.

Beside the fusion of two breathers with high power,
the inter-site symmetric collisions of two small power
breathers can result in a quasi-elastic collisions, Figure 7a.
For the critical power, inelastic collision results in a cre-
ation of two non identical breathers, Figure 7b. Asymmet-
ric energy redistribution between colliding breathers dur-
ing the collision process can be related to the numerical
noise (which emulates noise in the real physical system)
as mentioned above in connection with breather fusion.
However, additional investigations are necessary.

4.2 Collision complex

The total power and energy of the collision complex de-
pend on the radiation rate of the moving breathers and
the starting time of the collision, which is, on the other
hand, a function of initial mode positions and breathers
velocity k. In this paper the numerical calculations for
all parameter sets show that the collision complex power
and Hamiltonian are approximately given as P ≈ P1 +P2

(the relative variation δP ≈ 10−6) and H ≤ H1 + H2

(the relative variation δH ≈ 10−3), respectively. The colli-
sion complex is transient localized structure formed by two
breathers, Figure 8. Depending on the total power the col-
lision complex can evolve into a pair of moving breathers
(elastic collision), a pair of moving breathers with the ad-
ditional moving/standing breather, or a single breather
trapped on/between the lattice elements, Figure 5.

The time period of the collision complex existence can
be taken as the characteristic of the collision process. Rou-
ghly, when the cascade mechanism of saturation governs
the system behavior, the existence time for fixed k depends
on P . It is short for very low P , increases with the increase
of P and tends to infinity for the moving breathers with
high P . The first case corresponds to elastic collisions, and
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Fig. 6. The (on-site) collision of two identical breathers (ini-
tially on-site solitons) with P = 70.28, ω = 2 and different k.

the last to inelastic collisions, i.e. the colliding breathers
fuse.

In the previous section, the type of the breathers col-
lision is commented with respect to the energy exchange
between the collision complex and lattice. However, it is
only a rough description of the breathers interaction be-
cause the internal mode dynamics is not explicitly consid-
ered. Its significance can be illustrated by observing the
power and amplitude spectrums of the localized structures
during the collision process.

After elastic collisions the power spectrum of the re-
sulting breathers contains one peak, as before collision.
With the increase of k the peak becomes slightly wider
and the amplitude changes from a periodic into a quasi-
periodic in time.

Fig. 7. The inter-site collisions (x0 is in the middle between
n = 50 and n = 51): quasi-elastic, P1,2 = 0.14, k = 0.5 (a),
and inelastic with two non-identical breathers after collision,
P1,2 = 0.268, k = 0.015 (b).

The inelastic collisions result in a formation of a new,
trapped breather. Its power spectrum is wider in com-
parison to the spectrum of colliding breathers. Except the
broad spectral peak around ω = 2 additional peak appears
around ω = 1.2, Figure 9a. The corresponding amplitude
spectrums are shown in Figure 9b. With the increase of
k the amplitude spectrum is wider and new incommensu-
rate frequencies appear. Generally, the quasi-periodic or
chaotic breathers are indicated by the numerical calcula-
tions. In addition, the maximum amplitude of breathers
after collision changes from periodic/quasiperiodic to ir-
regular function of time, as illustrated in Figure 8b.

A significant tendency can be observed here: with in-
creasing complexity of the internal structure of the col-
liding breathers the collision type changes from elastic to
inelastic.

At the end of this section it is worth to point out that
the present analysis covers the whole parametric space.
It completes the earlier attempts to clarify the properties
of the symmetric breather collisions in lattices with sat-
urable nonlinearity based on the numerical analysis with
fixed breather and lattice parameters [16]. In addition, it
clarifies the breather fusion as the only collision output
in the lattice system in the region of high power, which
is not observed in the continuous systems with saturable
nonlinearity [14,15].
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Fig. 8. The maximum amplitude of the breathers against time.
The collision complex is created at the collision point. (a) Elas-
tic collision of two breathers with P = 0.14. (b) Two breathers
with high power P = 21.63 fuse into new breather with ap-
proximately P ≈ 2 · 21.63.

5 Conclusions

This paper is devoted to the study of symmetric colli-
sions between discrete breathers in a lattice with sat-
urable nonlinearity. The properties of breather collisions
are strongly correlated with the parameters of colliding
breathers (power, transverse velocity), the lattice param-
eters and position of the collision point. Therefore, several
different types of collision are observed in wide parame-
ter space: elastic (quasi-elastic) on-site (inter-site) colli-
sion, breather creation, fusion of colliding breathers and
creation of two asymmetric breathers (after inter-site col-
lision).

The specific characteristic of the discrete lattices with
saturable nonlinearities is the existence of the moving
localized modes with high power. However, contrary to
the corresponding continuous systems, moving localized
modes with high power exist only for a few values of the
breathers total power and transverse velocity. The col-
lision of two discrete breathers with high power always
results into a breathers fusion.
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Fig. 9. The power (a) and amplitude (b) spectrums before
collision (solid curves) and after collision (dashed curves) for
colliding breathers with P = 21.63, k = 0.015. The result of
collision is breather merging.

The diversity of the collision outputs is related to
the internal structure of the colliding breathers, and the
energy exchange between the collision complex and lat-
tice environment. The Fourier analysis of the colliding
breathers collision complex shows that elastic and inelas-
tic collisions are results of the interaction between periodic
and quasi-periodic breathers, respectively.

Further investigations are necessary for better un-
derstanding of asymmetric energy exchange between
breathers during collisions and investigation of the phase
difference effect on collision. Particularly, the interpreta-
tion of localized mode interactions in the language of the
dynamics of nonlinearly coupled oscillators will be an in-
triguing task.

This work is carried out under the auspices of the Ministry
of Sciences and Protection of the Environment of Republic of
Serbia (project 141034).
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11. M. Stepić, D. Kip, Lj. Hadžievski, A. Maluckov, Phys. Rev.
E 69, 066618 (2004)
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